

Internal Report

Deliverable D3.2A:

Identification of all public knowledge resources related to plant immune signaling

National Institute of Biology

Version 1 FINAL

Abstract: To improve further downstream analyses, we have identified the main important public knowledge sources related to immune signaling. Three important layers of biological regulation were chosen, namely protein-protein interactions, transcription factor regulation and regulation via small RNA molecules. For each separate source, we covered highly reliable, often manually curated corrections, enhancing them with data from high-throughput experimental datasets and also computational predictions, when deemed necessary.

Document administrative information			
Project acronym:	HinLife		
Project number:	J7-7303		
Deliverable number:	D3.2		
Deliverable full title:	Identification of all public knowledge resources related to plant immune signaling		
Document identifier:	HinLife D3.2 v1.FINAL		
Lead partner short name:	NIB		
Report version:	Version 1, FINAL		
Report preparation date:	09/02/2017		
Lead author:	Kristina Gruden		
Co-authors:	Živa Ramšak		
Status:	Final		

Introduction

Identification of important public knowledge sources enveloped main publically available data sources, particularly for Arabidopsis thaliana (as the main model plant organism). Highly reliable protein-protein interactions included the manually curated subset of the AtPIN database (Brandao et al., 2009) and STRING-v10 connections with a score larger than 0.9 (Szklarczyk et al., 2015), transcription factor regulation dataset was extracted from the atRegNet and ATRM databases (Jin et al., 2015; Palaniswamy et al., 2006) and micro RNA dataset from miRTarBase (Chou et al., 2015). Datasets resulting from high-throughput experiments or computational predictions of protein-protein interactions (Arabidopsis Interactome Mapping Consortium, 2011; Jones et al., 2014), transcription factor regulation (Chang et al., 2013; Liu et al., 2015) and miRNA regulation (Zhang et al., 2010; Yi et al., 2014) were also included. As highly reliable protein-protein interactions were more abundant, only predictions of transcription factor regulation (Srivastava et al., 2010) and miRNA regulation (Yi et al., 2014) were included. To enhance the knowledge on plant-virus interactions, datasets on host component interaction with virus components (Elena et al., 2011) or bacterial effector proteins were added (Mukhtar et al., 2011). Each connection was ranked based on its reliability in the following hierarchical order: (1) most reliable curated knowledge from literature, (2) connections resulting from high-throughput experiments and (3) in silico computationally predicted connections. For the connections that were present in different data sources the highest reliability level available was assigned. Selected datasets with their corresponding literature references are listed in Table 1, with an indication of data type and data reliability level.

Results

Table 1: In the connections table, the first two columns describe the data type and it's quality level (manually curated sources > high-throughput studies > in silico predictions). PPI – protein-protein interactions; TR – transcriptional regulation; miRNA – miRNA regulation.

Data	Quality	Source	Connections
Туре	Level		#
PPI	manually	AtPIN (Brandao et al., 2009)	6637
	curated	STRING-v10 (Szklarczyk et al., 2015)	9140
		PPI individual	31
PPI	HT studies	Arabidopsis interactome (Arabidopsis Interactome Mapping	11351
		Consortium, 2011)	12102
		membrane interactome (Jones et al., 2014)	175
		viral component interactions (Elena et al., 2011)	2795
		immune component interactions (Mukhtar et al., 2011)	
TF	manually	atRegNet (Palaniswamy et al., 2006)	4540
	curated	ATRM (Jin et al., 2015)	1440
		TF individual	34
TF	HT studies	atRegNet (Palaniswamy et al., 2006)	12334
		ChIP-seq (EIN3) (Chang et al., 2013)	1314
		ChIP-seq (WRKY33) (Liu et al., 2015)	214
TF	in silico	Arabidopsis transcription factor targets (Srivastava et al., 2010)	12333
	predictions		
miRNA	manually	miRTarBase (Chou et al., 2015)	68
	curated	miRNA individual	36
miRNA	HT studies	PMRD (Zhang et al., 2010)	1999
miRNA	in silico	PNRD (Yi et al., 2014)	1617
	predictions		

References

- Arabidopsis Interactome Mapping Consortium (2011). Evidence for Network Evolution in an Arabidopsis Interactome Map. Science (80-.). 333: 601–607.
- Brandao, M.M., Dantas, L.L., and Silva-Filho, M.C. (2009). AtPIN: Arabidopsis thaliana protein interaction network. BMC Bioinformatics 10: 454.
- Chang, K.N. et al. (2013). Temporal transcriptional response to ethylene gas drives growth hormone crossregulation in Arabidopsis. Elife **2013**: 1–20.
- Chou, C.-H. et al. (2015). miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 44: gkv1258-.
- Elena, S.F., Carrera, J., and Rodrigo, G. (2011). A systems biology approach to the evolution of plant-virus interactions. Curr. Opin. Plant Biol. 14: 372–377.
- Jin, J., He, K., Tang, X., Li, Z., Lv, L., Zhao, Y., Luo, J., and Gao, G. (2015). An arabidopsis transcriptional regulatory map reveals distinct functional and evolutionary features of novel transcription factors. Mol. Biol. Evol. 32: 1767–1773.
- Jones, A.M. et al. (2014). Border control--a membrane-linked interactome of Arabidopsis. Science (80-.). 344: 711–716.
- Liu, S., Kracher, B., Ziegler, J., Birkenbihl, R.P., and Somssich, I.E. (2015). Negative regulation of ABA Signaling By WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. Elife 4: 1–27.
- Mukhtar, M.S. et al. (2011). Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science (80-.). 333: 596–601.
- Palaniswamy, S.K., James, S., Sun, H., Lamb, R.S., Davuluri, R. V., and Grotewold, E. (2006). AGRIS and AtRegNet. A Platform to Link cis-Regulatory Elements and Transcription Factors into Regulatory Networks. Plant Physiol. 140: 818–829.
- Srivastava, G.P., Li, P., Liu, J., and Xu, D. (2010). Identification of transcription factor's targets using tissuespecific transcriptomic data in Arabidopsis thaliana. BMC Syst. Biol. 4 Suppl 2: S2.
- Szklarczyk, D. et al. (2015). STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43: D447–D452.
- Yi, X., Zhang, Z., Ling, Y., Xu, W., and Su, Z. (2014). PNRD: a plant non-coding RNA database. Nucleic Acids Res.: 1–8.
- Zhang, Z., Yu, J., Li, D., Zhang, Z., Liu, F., Zhou, X., Wang, T., Ling, Y., and Su, Z. (2010). PMRD: plant microRNA database. Nucleic Acids Res. 38: 806–813.