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Abstract. This chapter addresses the analysis of information networks,
focusing on heterogeneous information networks with more than one
type of nodes and arcs. After an overview of tasks and approaches to
mining heterogeneous information networks, the presentation focuses on
text-enriched heterogeneous information networks whose distinguishing
property is that certain nodes are enriched with text information. A
particular approach to mining text-enriched heterogeneous information
networks is presented that combines text mining and network mining ap-
proaches. The approach decomposes a heterogeneous network into sep-
arate homogeneous networks, followed by concatenating the structural
context vectors calculated from separate homogeneous networks with the
bag-of-words vectors obtained from textual information contained in cer-
tain network nodes. The approach is show-cased on the analysis of two
real-life text-enriched heterogeneous citation networks.

1 Introduction

The field of network analysis has its roots in two research fields: mathematical
graph theory and social sciences. Network analysis started as an independent
research discipline in the late seventies (Zachary, 1977) and early eighties (Burt
and Minor, 1983), when sociologists became increasingly aware that the study
of social relations—and not only individual attributes—is necessary for in-depth
analysis of human societies. Since this early research, network analysis has grown
substantially: the field now covers not only social networks but also general
networks originating from any (scientific) discipline.

In recent years, analysis of heterogeneous information networks (Sun and
Han, 2012) has gained momentum. In contrast to standard homogeneous infor-
mation networks, heterogeneous information networks describe heterogeneous
types of entities and different types of relations. Moreover, in enriched hetero-
geneous information networks, nodes of certain type contain additional infor-
mation, for example in the form of experimental results or documents. After an



overview of tasks and approaches to mining heterogeneous information networks,
we focus on text-enriched heterogeneous information networks. We present a par-
ticular approach to mining text-enriched heterogeneous information networks,
together with its application in two complex real-life domains. In the first ex-
ample, video lectures from the VideoLectures.NET website, forming a network
of lectures, authors and viewers, are enriched with their abstracts. The results
show that using both structural context vectors and bag-of-words vectors im-
proves category prediction compared to using only one type of vectors. In the
second example, scientific publications forming a network of publications and
authors, are enriched with their abstracts. The results show that increasing the
network size and combining text and network structure information improves
the accuracy of paper categorization.

The chapter is structured as follows. Section 2 introduces the concepts of
homogeneous and heterogeneous information networks and presents examples of
such networks. Section 3 presents data analysis tasks applicable in homogeneous
or heterogeneous networks. Section 4 presents an approach to the analysis of
text-enriched information networks. Sections 5 and 6 present the applications of
the described methodology in two real-life domains: a network of video lectures
and their authors and a citation network of psychology papers, respectively. The
chapter concludes with a summary and opportunities for further work.

2 Information networks

This section introduces the area of information network analysis, illustrated with
some real-world examples of information networks.

Standard data sets used in data mining and machine learning are usually
available in a tabular form, where a data instance (corresponding to a row in
the data table) is characterized by its properties described in terms of the values
of a selected set of attributes (each corresponding to a table column). In contrast,
the motivation for information network mining is due to the fact that information
may exists both at the instance level and in the way how the instances interact.

Intuitively, an information network is a network composed of entities (for
example, web pages) that are in some way connected to other entities (one page
may contain links to other pages). In mathematical terms, such structures are
represented by graphs.

Definition 1. A graph G = (V,E) is a mathematical object, composed of a set
of vertices V and a set of edges E connecting the vertices. Set of edges E is the
union of two sets, E = EU ∪ED, where set EU contains undirected edges {x, y}
and set ED contains directed edges (x, y) between pairs of vertices x, y.

– If all edges present in E are undirected, we call the graph undirected. If all
edges are directed, the graph is directed. Graphs containing both directed and
undirected edges are sometimes referred to as mixed graphs.

– A graph with no loops (edges connecting a node to itself) and no multiple
edges (meaning that a pair of nodes is connected by at most one edge) is
called a simple graph.



Graphs are a convenient way to represent relations between different enti-
ties, but do not contain any real data themselves. An information network is a
graph in which each vertex has certain properties. Networks are a richer way of
representing data than using either graphs or tables, but can lack the power to
represent truly complex interactions between entities of different types. To this
end, we define the concept of a heterogeneous information network.

Definition 2. A heterogeneous information network is a tuple (V,E,A, E , τ, φ),
where G = (V,E) is a directed graph, A a set of object types, R a set of edge
types and τ : V → A and φ : E → R are functions satisfying the conditions:
if edges e1 = (x1, y1) and e2 = (x2, y2) belong to the same edge type (φ(e1) =
φ(e2)), then their start points and their end points belong to the same vertex type
(τ(x1) = τ(x2) and τ(y1) = τ(y2)).

Remark 1. In many information networks, vertices of two types a1 and a2 are
only connected by edges of one type. In this case, the edge type is uniquely
defined by the type of its starting and ending vertex type and is not explicitly
stated. It is common to view the elements of the set A as disjoint sets of vertices
from V , instead of abstract types. This gives rise to the style of writing, where
for type t1 ∈ A, and vertex v ∈ V , we write v ∈ t1 instead of the usual τ(v) = t1
to denote the fact that v is of type t1.

Remark 2. A heterogeneous information network may also be represented in a
relational, RDF-like form as a set of triplets. Edge types, in this representation,
would be represented as relations. In this representation, network schemas of het-
erogeneous information networks correspond to RDF schemas. The constraints
put on edge types in heterogeneous information networks (i.e. that all edges of a
certain type start in nodes of the same type) can be encoded using rdfs:domain

and rdfs:range properties.

Sun and Han (2012) note that sets A and E , along with the restrictions
imposed by the definition of a heterogeneous information network, can be seen
as a network as well, with edges connecting two vertex types if there exists an
edge type whose edges connect vertices of the two vertex types. The authors call
this ‘meta-level’ description of a network a network schema.

Definition 3. For a heterogeneous information network G = (V,E,A, E , τ, φ),
a network schema of G, denoted TG, is a directed graph with vertices A and
edges E, where edge type t ∈ E whose edges connect vertices of type t1 ∈ A to
vertices of type t2 ∈ A, defines an edge in E from type t1 to t2.

Given such a broad definition of heterogeneous information networks, a large
amount of human knowledge can be expressed in the form of networks. Some
examples are listed below.

Example 1. Bibliographic information networks or citation networks, such as the
DBLP network examined by Sun and Han (2012) or the network examined by
Grčar et al. (2013) are networks connecting authors of scientific papers with



their papers. Thus, in their elementary form, they contain at least two types of
entities (authors (A) and papers (P)), and at least one type of edges, connecting
authors to the papers they have (co)authored. On top of this, the network may
also include several other entity types, including journals and conferences (which
can be merged into one type, venue), institutions and so on. Along with the entity
types, the list of edge types is also expanded: papers are, for example, written by
authors, published at venues and contain certain terms. Papers may cite other
papers, meaning that a paper in the network can be connected to entities of all
other entity types in the network.

Example 2. Online social networks model the structure of popular online social
platforms such as Twitter and Facebook. In the case of Twitter the network
entity types are user, tweet, hashtag, and term. The connections between the
types are as follows: users follow other users and post tweets, tweets reply to
other tweets and contain both terms and hashtags.

Example 3. Biological networks represent a starting point for a large number
of different heterogeneous information networks and can contain entity types
such as species, genes, Gene Ontology (Consortium, 2000) annotations, proteins,
metabolites and so on. The types of links between such mixed entities are diverse.
For example, genes can belong to species, encode proteins, be annotated by a
GO annotation, and so on.

3 Analysis of information networks

We present some analytic tasks which can be applied to information networks.
First, we present general tasks that can be applied to homogeneous networks,
followed by approaches to mining heterogeneous networks.

3.1 Tasks in homogeneous information network analysis

The field of information network analysis covers a wide variety of tasks. Some
of them are listed below.

Classification. Classification of network data is a natural generalization of clas-
sification tasks encountered in a typical machine learning setting. The problem
formulation is simple: given a network and class labels for some of the entities in
the network, predict the class labels for the rest of the entities in the network.
Another name for this problem is label propagation. A common approach used
for this task is the algorithm proposed by Zhou et al. (2004). The approach finds
a probability distribution f of a vertex vi being labeled with label 1 (as opposed
to 0). The classification problem in this case is a binary classification problem.
The method finds f by minimizing the function

fT (I −D−1/2MD−1/2)f + µ||f − y||2, (1)



where M is the adjacency (or weight) matrix of the network and D is a diagonal
matrix defined as dii = deg(vi) =

∑
j mij . The two summands in Equation (1)

represent two demands that have to be fulfilled: (i) the label distribution for ver-
tices which are connected (especially the ones connected with strong edges) must
be similar, and (ii) the distribution must be close to the original distribution of
the data already labeled. Parameter µ determines the strength of two influences
on the result: a large value of µ results in a labeling that closely matches the
known labels while a small value of µ strongly penalizes connections between
differently labeled vertices. This approach was tried by Vanunu et al. (2010),
where the method was used to discover new genes, associated with a disease.

Link prediction. While classification tasks try to discover new knowledge
about network entities, link prediction focuses on unknown connections between
the entities. The assumption is that not all network edges are known. The task
of link prediction is to predict new edges that are missing or likely to appear in
the future. A common approach to link prediction is assigning a score s(u, v) to
each pair of vertices u and v which models a probability of the vertices being
connected. Approaches used include calculating the score as a product of vertex
degrees (Barabási et al., 2002) and (Newman, 2001a), or using the number of
common neighbors of two vertices, |Nu ∩Nv| (Newman, 2001b). The latter ap-
proach can be modified to the Jaccard coefficient of Nu and Nv, which is defined

as |Nu∩Nv|
|Nu∪Nv| with values in [0, 1]. This normalization prevents high degree vertices

to overshadow low degree vertex pairs, which may have a large share of common
neighbors. The Adamic/Adar measure, used in (Adamic and Adar, 2003), fur-
ther increases the impact of low degree vertices by calculating the distance as

follows:
∑

n∈Nu∩Nv

1

log(|Nn|)
.

Community detection. There is a general consensus on what a network com-
munity is, however, there is no strict definition of the term. The idea is well
summarized in the definition by Yang et al. (2010): a community is a group of
network nodes, with dense links within the group and sparse links between the
groups. An extensive overview of community detection methods is presented in
(Plantié and Crampes, 2013).

Ranking. The objective of ranking in information networks is to asses the
relevance of a given object either globally (with regard to the whole graph) or
locally (relative to some object in the graph). A well known ranking method is
PageRank (Page et al., 1999), which was used in the Google search engine. The
idea of PageRank—frequently abbreviated as PR—is simple: for a given network
with the adjacency matrix M , the score of the i-th vertex is equal to the i-th
component of the dominant eigenvector of M ′T , where M ′ is the matrix M with
rows normalized so that they sum to 1. This is motivated by two different views.



The first is the random walker approach: a random walker starts walking
from a random vertex v of the network and in each step walks to one of the
neighboring vertices with a probability proportional to the weight of the edge
traversed. The PageRank of a vertex is then the expected proportion of time the
walker spends in the vertex, or, equivalently, the probability that the walker is
in the particular vertex after a long time. The second view of PageRank is the
view of score propagation. The PageRank of a vertex is its score, which it passes
to the neighboring vertices. A vertex vi with a score PR(i) transfers its score to
all its neighbors. Each neighbor receives a share of the score proportional to the
strength of the edge between it and vi. This view explains the PageRank with
a principle that in order for a vertex to be highly ranked, it must be pointed to
by many highly ranked vertices.

Other methods for ranking include Personalized-PageRank (Page et al., 1999)—
frequently abbreviated as P-PR—that calculates the vertex score locally to a
given network vertex, SimRank (Jeh and Widom, 2002), diffusion kernels (Kon-
dor and Lafferty, 2002), hubs and authorities (Kleinberg, 1999) and spreading
activation (Crestani, 1997).

3.2 Tasks in heterogeneous information network analysis

Most data mining tasks in homogeneous information networks can be applied to
heterogeneous networks by simply ignoring the heterogeneous structure. This,
however, decreases the amount of information available in subsequent steps and
can therefore decrease the performance of algorithms (Davis et al., 2011). Ap-
proaches that take the heterogeneous network structure into account are there-
fore preferable.

Authority ranking. Sun and Han (2012) introduce authority ranking to rank
the vertices of a bipartite network, where vertices are comprised of a set of
authors X = {x1, . . . , xm} and a set of papers Y = {y1, . . . , yn}. There are two
edge types: links from papers to authors and links from authors to papers. The
adjacency matrix of the network can therefore be written as

M =

[
0 MXY

MY X 0

]
where MY X contains weights of edges pointing from authors to papers and MXY

contains weights of edges pointing from papers to authors.
The concept of authority ranking is a generalization of PageRank for bipartite

networks, defining two functions rX (ranking the set X) and rY (ranking the set
Y ) to rank papers and authors separately. The functions are defined as follows:

rX(xi) =

n∑
j=1

rXY
ij rY (xj) (2)

rY (yj) =

m∑
i=1

rY X
ji (j)rX(yi) (3)



where rXY
ij is the weight of the edge between vertices i and j. The weights

the matrix R, obtained from the matrix M by normalizing the row sums to
1, as in the PageRank approach. The above equations can be rewritten as an
eigenproblem for a block matrix, since vectors rX and rY satisfy rX = RXY rY
and rY = RY XrX or, in matrix form:[

rX
rY

]
=

[
0 RXY

RY X 0

] [
rX
ry

]
.

Similarly, Sun et al. (2009b) define authority ranking on a star heterogeneous
network with a central type Z, where instead of propagating authority directly
from a node of type X to a node of type Y , authority is propagated indirectly
through a node of type Z, yielding equations rX = RXYRZY rY for all pairs of
types X and Y .

Ranking based clustering. While both ranking and clustering can be per-
formed on heterogeneous information networks, applying only one of the two
may sometimes lead to results which are not truly informative as there is a high
risk of apples-to-pears comparisons being made. For example, simply ranking
authors in a bibliographic network may lead to a comparison of scientists in
completely different fields of work which may not be comparable. Sun and Han
(2012) propose joining the two seemingly orthogonal approaches to information
network analysis (ranking and clustering) into one. They propose two algorithms:
RankClus (Sun et al., 2009a) and NetClus (Sun et al., 2009b), both of which
cluster entities of a certain type (for example, authors) into clusters and rank
the entities within clusters. Algorithm RankClus is tailored for bipartite infor-
mation networks, while NetClus can be applied to networks with a star network
schema.

The RankClus algorithm starts with a starting clustering of elements, which
it then iteratively improves. The ranking of objects within each type is used
to define ranking functions rY |Xi

, which rank elements of type Y only taking
into account elements of type X, belonging to cluster Xi. For the next step,
the algorithm considers the ranking rY |Xi

as values proportional to probabilities
that objects from Y belong to cluster Xi. This is justified by the fact that when
the clustering is discovered, the elements of Y will only have a high rank within
the cluster they belong to. Using this view the algorithm constructs a mixture
model (using the EM algorithm (Bilmes, 1997)) to evaluate the probabilities of
links belonging to each of the clusters. Using this knowledge, new clusters of type
X are constructed and the process is repeated until convergence. The NetClus
algorithm shares its idea with the RankClus. Instead of applying probabilities
to links, as in RankClus, the role of links in NetClus is replaced by objects
belonging to the central type in the star network.

Classification through label propagation. The problem of classification
is generalized from homogeneous to heterogeneous networks: given a network



and class labels for some of the entities in the network, predict the labels of
the remaining entities in the network. In (Hwang and Kuang, 2010) the idea of
label propagation used by Zhou et al. (2004) is expanded to include multiple
parameters µij in place of a single parameter µ appearing in Equation (1). A
similar approach is taken by Sun and Han (2012). Ji et al. (2010) propose the
GNETMINE algorithm which uses the idea of knowledge propagation through a
heterogeneous information network to find probability estimates for labels of the
unlabeled data. A strong point of this approach is that it has no limitations on the
network schema, meaning it can be applied to both highly complex heterogeneous
and homogeneous networks.

Ranking based classification. Building on the idea of GNETMINE, Sun and
Han (2012) propose a classification algorithm that relies on within-class ranking
functions to achieve better classification results. The idea is that nodes, con-
nected to high ranked entities belonging to class c, most likely belong to the
same class. This idea is implemented in the RankClass framework for classifica-
tion in heterogeneous information networks.

Ranking and classification in RankClass are interlinked, since only elements
within each class are ranked rather than the whole set. The methodology con-
sists of two steps which are applied successively until the convergence. In the
ranking step, the network elements are ranked according to the authority rank-
ing principle. Then, given the rankings of elements, the EM algorithm calculates
new estimates of probabilities that elements belongs to a certain class. Edges
connecting elements likely to belong to the same class are increased and within
class rankings are recalculated.

Multi-relational link prediction. Expanding the ideas of link prediction for
homogeneous information networks, Davis et al. (2011) propose a link prediction
algorithm for each pair of object types in the network. The score is higher if the
two objects are likely to be linked. Two objects o1 and o2 of types t1 and t2
have a high score if there exist many common neighbors of o1 and o2, which are
neighbors to connected objects of types t1 and t2 (for example, if two authors
often attend the same conferences, and it is common for authors at a conference
to be paper co-authors, it is probable that the two authors are going to become
co-authors of a paper).

Semantic link association prediction. Chen et al. (2012) constructed a
heterogeneous network consisting of 295, 897 nodes and 727, 997 edges from 17
publicly available data sources about drug target interaction, including seman-
tically annotated knowledge sources in the form of ontologies. The constructed
heterogeneous network contains 10 node types and 12 edge types. Two most
important node types are target nodes, representing individual genes, and chem-
ical compound nodes. These two node types are connected by two edge types: a
chemical compound can bind to a certain target gene or can change the expres-
sion of the gene. In addition to these two link types, target nodes are linked to



nodes representing Gene Ontology (Consortium, 2000) concepts, KEGG (Kane-
hisa and Goto, 2000) pathways, tissues and diseases. Chemical compound nodes
are linked to nodes representing chemical ontology concepts, chemical substruc-
tures, medical side effects and diseases.The authors developed a statistic model
called Semantic Link Association Prediction (SLAP) to measure associations
between network elements. Scores are calculated for drug-target pairs for each
possible meta path between the two. The scores are normalized for each meta
path, with the sum giving an actual association score between the elements.
Element pairs with significant scores (smaller p-values) are then discovered.

3.3 Data-enriched network analysis

The methods described in Sections 3.1 and 3.2 rely solely on the network struc-
ture to extract information. However, as an information network includes both
the network structure and the data itself, it is sensible to include the data at-
tached to each node into the network analysis process as well.

Network Guided Forest. Dutkowski and Ideker (2011) present a method
based on decision trees to analyze a protein-protein interaction network. They
analyze gene expression data from several studies on human cancers. The data
consists of gene expression levels, obtained through microarray experiments and
contains a series of expression levels, one for each gene of each sample. The
proposed method, named Network-Guided Forests (NGF), constructs a forest
of trees to classify an example into the appropriate class according to the ex-
pression levels of the examined genes. The final result is obtained through the
aggregation of all results. The NGF method is similar to the random forest
method (Breiman, 2001) as it constructs several decision trees and each deci-
sion tree classifies examples according to their gene expression. The difference
is that in NGF the construction of trees is guided by the underlying network of
protein-protein interactions, which helps to find the best gene to split the data
in each tree node. This approach is interesting from a conceptual point of view,
as it is composed of both network analysis methods and standard statistical and
data mining algorithms. It can be viewed as either mining data enriched with a
network component, or analysis of networks enriched with experimental data.

Two-step clustering. Hofree et al. (2013) also combine network analysis and
data mining. They analyze a complex network of gene-gene interactions to an-
alyze cancer patient data. The data consists of a large binary matrix F with
values indicating if a given gene is mutated for a patient. They propose a two-
step patient clustering method. First, a network propagation approach based on
(Zhou et al., 2004) (see Section 3.1) is applied to the network which transforms
the original binary matrix into a matrix with values in [0, 1]. In the second step,
authors use non-negative matrix factorization (Lee and Seung, 1999) to find
candidate features to use in clustering.



Network extraction using text mining. While human readable documents
may contain a lot of information, this information is not conveniently structured
for data analysis. As information networks are a better way of representing
knowledge, several methods and applications converted databases of scientific
articles into large (and usually heterogeneous) information networks. One of the
first attempts is described by Jenssen et al. (2001), where a network of hu-
man genes is constructed from titles and abstracts of over 10 million MEDLINE
records. Kok and Domingos (2008) use relational clustering to cluster both ver-
tices and edges and construct a semantic network from the text. In (Chen and
Sharp, 2004), a NLP-based text mining approach called Chilibot was introduced.
The methodology can construct networks about biological entities using articles
collected from PubMed. Van Landeghem et al. (2013) used a semantic network
extracted from PubMed articles with protein–protein and regulatory interactions
from experimental databases to discover clusters of tightly connected genes.

4 Mining text-enriched heterogeneous information
networks

This section introduces the methodology of mining text-enriched information
networks first described by Grčar et al. (2013). The methodology uses both
text mining and network analysis of text-enriched heterogeneous information
networks (such as the citation network of scientific papers) to construct feature
vectors which describe both, the location of nodes in the network and internal
structure of nodes.

4.1 Data structure

The data in a text-enriched heterogeneous information network is a fusion of two
diffedrent data types: heterogeneous information networks and texts. Our data
thus comprises of a heterogeneous information network with different node and
edge types, where nodes of one designated type are text documents. An example
of a heterogeneous citation network in which the text documents are papers is
shown in Figure 1 and its network schema is presented in Figure 2.

Remark 3. In a directed heterogeneous network, an edge from vertex v to vertex
w (for example, an author writes a paper) implicitly defines an ‘inverse’ edge
going from vertex w to vertex v (a paper is written by an author).

4.2 Network decomposition

The first step of the methodology focuses on the network structure. The original
heterogeneous information network is decomposed into a set of homogeneous
networks. Each homogeneous network is constructed from a circular walk in the
original network schema. If a sequence of node types t1, t2, . . . , tn forms a circular



Author 1

Author 2

Author 3

Author 4

Paper
1

Paper
2

Paper
3

Paper
4

PRICAI
2008

cites

cites

inProceedings

inProceedings

inProceedings

inProceedings

isA

isA

DS

DS 2010

DS 2011

AuthorOf

AuthorOf

AuthorOf

AuthorOf

Author 5

AuthorOf

AuthorOf

AuthorOf

AuthorOf

Fig. 1. An example of a citation network (from Grčar et al. (2013)).
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familyConferenceAuthor PaperAuthorOf InProceedings IsA
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Fig. 2. The network schema of the citation network, shown in Figure 1.

walk (meaning that t1 = tn) in the network schema, then two nodes n and m are
connected in the decomposed network if there exists a walk n1, n2, . . . nn such
that n1 = n, nn = m and each node ni in the walk is of type ti.

Take for example the network shown in Figure 1. From it (using the implicitly
defined inverse edges, described in Remark 3), we construct three homogeneous
networks of papers, shown in Figure 3:

– The first network (Figure 3a) is constructed using the walk Paper HasAuthor
Author AuthorOf Paper, i.e., two papers are connected if they share a com-
mon author.

– The second network (Figure 3b) is constructed using the walk Paper in-
Proceedings of Conference isA Conference family hasConference Conference
containsPaper Paper and two papers are connected if they appeared at the
same conference family.

– The third network (Figure 3c) is constructed using the walk Paper cites
Paper and two papers are connected if one paper cites another.

This step of the methodology is the only one which cannot be made fully auto-
matic. For each heterogeneous network, different meta-paths can be considered,
and expert judgment is required to asses their importance. Usually meta-paths of
heterogeneous networks have a real-world meaning, so field experts may provide
insights into paths importance.

4.3 Feature vector construction

In the second step of the methodology, a set of feature vectors is calculated
for each node in the original heterogeneous network: a bag-of-words vector con-
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Fig. 3. The decomposition of the network from Figure 1 according to the (a) paper-
author-paper, (b) paper-conference family-paper and (c) paper-paper meta-paths. The
nodes in the decompositions correspond to the papers in the original network. The
weights, assigned to the edges in this example, are obtained by simply counting the
number of paths in the original network which correspond to a link in the decomposed
network. The weight in the Paper-Author-Paper decomposition corresponds to the
number of authors, shared by two papers.

structed from the text document, and feature vectors constructed from all ho-
mogeneous networks.

In the bag-of-words (BOW) construction, each text is processed using stan-
dard natural language processing techniques. Typically the following steps are
performed: preprocessing using a tokenizer, stop-word removal, stemming, con-
struction of N-grams of certain length, and removal of infrequent words from
the vocabulary. The resulting vectors are normalized according to the Euclidean
metric.

For each homogeneous networks, obtained through network decomposition,
the personalized PageRank (P-PR) algorithm (Page et al., 1999) is used to con-
struct feature vectors for each node in the network.

Personalized page rank of node v (P-PRv) in a network is a vector, which
for each other node w of the network, tells how simple it is to randomly walk
from v to w. It is defined as the stationary distribution of the position of a
random walker which starts its walk in node v and at either selects one of the
outgoing connections or travels to his starting location. The probability (denoted
p) of continuing the walk is a parameter of the algorithm and is usually set to
0.85. The resulting PageRank vectors are normalized according to the Euclidean
norm to make them compatible with the BOW vector calculated for the same
document.

The PageRank vector is calculated iteratively. In the first step, the rank of
node v is set to 1 and the other ranks are set to 0 to construct r0, the 0-th
estimation of the PageRank vector. Then, at each step, the rank is spread along
the connections of the network using the formula

r(k+1) = p(AT r(k)) + (1− p)r(0). (4)

In Equation 4, r(k) is the estimation of the PageRank vector after k iterations,
and A is the coincidence matrix of the network, normalized so that the elements
in each row sum to 1. If all elements in a given row of the coincidence matrix
are zero (i.e., if a vertex has no outgoing connections), all values in that row are



set to 1
n , where n is the number of vertices (this simulates the behaviour of the

walker when jumping from a node with no outgoing connections to any other
node in the network).

Remark 4. Continuing from Remark 2, if heterogeneous information networks
are viewed as RDF-graphs, we can consider the feature vector construction as a
further enrichment of the RDF-graph. Bag-of-words vectors can be represented
as a set of triplets using the hasTerm relation, as seen in Lytras and Sheth (2010),
and P −PR vectors may be represented as a set of triplets using a distanceFrom
relation with a numeric property. In this way, the PageRank vector for node v
would be encoded in all relations of the type distanceFrom which start in v.

4.4 Data fusion

The result of running both the text mining procedure and the P-PR algorithm is
a set of vectors {v0, v1, . . . , vn} for each node v, where v0 is the BOW vector, and
where for each i (1 ≤ i ≤ n, where n is the number of network decompositions), vi
is the personalized PageRank vector of node v in the i-th homogeneous network.
In the final step of the methodology, these vectors are combined to create a final
feature vector. Using positive weights α0, α1, . . . , αn, which sum to 1, a unified
vector is constructed describing the node v. The vector is constructed as

v =
√
α0b⊕

√
α1v1 ⊕ · · · ⊕

√
αnvn,

where the symbol ⊕ represents the concatenation of two vectors. The values of
weights αi can be determined automatically.

A simple way to automatically set weights is to use an optimization algorithm
such as the multiple kernel learning (MKL), presented in (Rakotomamonjy et al.,
2008), in which the feature vectors are viewed as linear kernels. For each i, the
vector vi corresponds to a linear mapping vi : x 7→ x · vi. The concatenated
vector v then represents the linear mapping

[x0, x1, . . . , xn] 7→ α0x0 · v0 + α1x1 · v1 + · · ·+ αn · vn.

Another possibility is to determine the optimal weights using a general purpose
optimization algorithm, e.g., differential evolution (Storn and Price, 1997).

4.5 Scalability issues

While the calculation of bag-of-words vectors can be done in a single pass over
the data, the calculation of P −PR vectors has to be adapted when the number
of basic nodes becomes too large. The iterative process converges to a stationary
distribution of the rank after several steps. In our experiments, the required
number of steps ranged from 50 to 100, and since each step requires a matrix-
vector multiplication, the calculation of a single P-PR vector may take several
seconds for a large network, making the calculation of tens of thousands of P-
PR vectors computationally difficult. Here, we present some ideas to handle the
rising computational complexity of large networks.



To reduce the size of the network on which PageRank vectors are calculated
we calculated P −PRv by performing the PageRank algorithm on a subnetwork
of the original network, composed of nodes that have a path leading from v
to them in the original network (Kralj et al., 2015). The P − PR value for all
other nodes is set to 0. We can also limit the size of the graph on which the
P − PR method is applied by calculating only PageRank values of nodes in a
local neighborhood of a given node, setting PageRank values for nodes that are
too far from the start node to 0. This in some cases decreases the computation
time, but the decrease will not occur in many real world networks, especially
small world networks (Watts and Strogatz, 1998), in which the shortest path
between any two nodes may be very short.

Alternatively, a community detection method (Plantié and Crampes, 2013)
can be used as a preprocessing step in the calculation of P − PR vectors. Once
the communities in the graph are discovered, one can calculate P −PRv by only
calculating its values on a subgraph containing all the nodes of the same com-
munity as v and links between them. We can treat the remaining communities as
non-existent by setting the PageRank value of their nodes to 0, or treat them as
a single entity by replacing the entire community with one node v. For a node w,
the weight of the edge between v and w can be calculated as the sum, average,
or maximum of all weights leading from v to the community.

5 VideoLectures.NET categorization case study

The network propositionalization approach, described in Section 4, was applied
to a network of 3, 520 lectures from the VideoLectures.NET website. The aim of
the experiment was to develop a method that can assist in categorization of lec-
tures, hosted on the site. This functionality was required due to the rapid growth
of the number of hosted lectures (150–200 lectures are added each month) as well
as due to the fact that the categorization taxonomy is fine-grained, making man-
ual categorization difficult.

5.1 Data set

Of the 3, 520 lectures 1, 156 lectures were manually categorized into 129 cat-
egories (one lecture may belong to more than one category) by the curators
of the website. The data included 2, 706 lecture authors, events at which the
lectures were filmed and 62, 070 user clicks. From this data we constructed a
heterogeneous network containing lectures, authors, events and portal users as
nodes.

Each lecture contained a title and possibly an abstract which were used
to create the BOW vector for each lecture. The heterogeneous network was
decomposed into three homogeneous networks: the lecture-event-lecture network,
the lecture-author-lecture and the lecture-viewer-lecture network, in which links
between two lectures were weighed in proportion to the number of viewers that
viewed both lectures.



5.2 Experiment description

In the first set of experiments, a pure text mining approach was used to classify
the lectures. The lectures were processed using a standard text mining approach
using both TF and TF-IDF weighing. The n-gram length, the minimum term
frequency and the cut-off percentage were varied to provide several benchmark
performance measures. For each parameter setting the centroid classifier was
used on the resulting vectors to predict the categories of individual video lecture.

In the second set of experiments, the vectors obtained through text mining
were used to train two classifiers: the k-nearest neighbors classifier and the SVM
classifier. For the k-NN classifier, k was set to 20, and for SVM, the SVM-
Multiclass (Joachims et al., 2009) was used with the termination criterion set to
0.1 and the trade-off between error and margin set to 5, 000. In addition to the
text mining vectors, the SVM and k-NN classifiers were also applied to diffusion
kernels (DK) (Kondor and Lafferty, 2002) calculated on the three homogeneous
graphs.

The third set of experiments used the methodology proposed in Section 4.
The method was deployed on each of the three homogeneous graphs from Sec-
tion 5.1. For each homogeneous graph, the three classifiers from the first two
sets (the centroid classifier, the SVM classifier and the k-NN classifier) were ap-
plied to the resulting feature vectors. Next the feature vectors were combined
as described in Section 4.4. The feature vectors were combined (a) using equal
weights for all feature vectors, or (b) using a stochastic optimizer called differ-
ential evolution (DE) (Storn and Price, 1997).

5.3 Evaluation and results

In the experiments described in Section 5.2 the performance of classifiers was
evaluated by matching predictions to the pre-categorized classes. Classification
accuracy was measured on the top 1, 3, 5 and 10 categories, proposed by the
classifier. For each experiment, a 10-fold cross validation was performed. The
results are given in Table 1.

The results of the first set of experiments show that using a TF-IDF weighing
improves the accuracy of the centroid classifier compared to using TF weights.
Varying the minimum frequency, n-gram length and cut-off values resulted in
smaller improvements to the performance. The most efficient setting was using
2−grams and the minimum term frequency of 1, so this setting was used in all
BOW constructions in the successive experiments.

The results of the second set of experiments show that the text mining ap-
proach performs relatively well and outperforms both the classifier based on the
same-event network and the classifier based on the same-author network. The
same-author graph contains the least relevant information for the categorization
task. The most relevant information is contained in the viewed-together graph.
It is noteworthy that the choice of the classification algorithm is less important
than the data source from which the similarities between objects are inferred.



Setting Top 1 Top 3 Top 5 Top 10

First set (text mining) Accuracy (%)

TF, n = 1,min-freq = 1, cut-off = 0 53.97 69.46 74.48 81.74
TF-IDF, n = 1,min-freq = 1, cut-off = 0 58.99 75.34 79.50 85.55
TF-IDF, n = 2,min-freq = 1, cut-off = 0 59.60 75.34 80.27 85.20
TF-IDF, n = 3,min-freq = 1, cut-off = 0 59.42 75.77 80.10 85.20
TF-IDF, n = 2,min-freq = 2, cut-off = 0 59.51 76.21 80.79 85.46
TF-IDF, n = 2,min-freq = 3, cut-off = 0 58.13 75.86 80.62 85.20
TF-IDF, n = 2,min-freq = 2, cut-off = 0.1 58.99 75.34 79.15 84.25

Second set (Text mining + DK) Accuracy (%)

Text mining + SVM 59.16 73.09 78.28 82.96
Text mining + k-NN 58.47 72.74 78.28 83.91
Text mining + centroid 59.51 76.21 80.79 85.46
DK on viewed-together + SVM 70.75 86.93 90.92 93.68
DK on viewed-together + k-NN 72.74 87.80 90.83 93.94
DK on same-event + SVM 32.00 49.04 54.67 58.65
DK on same-event + k-NN 31.92 47.66 53.37 61.07
DK on same-author + SVM 18.94 27.51 31.22 36.24
DK on same-author + k-NN 19.81 31.74 36.24 43.59

Third set (enriched networks) Accuracy (%)

viewed-together + SVM 70.41 85.46 89.71 93.60
viewed-together + k-NN 70.75 84.60 89.36 93.34
viewed-together + centroid 74.91 89.01 92.13 95.33
same-evend + SVM 31.74 50.17 55.97 59.95
same-evend + k-NN 32.34 50.43 55.96 64.79
same-evend + centroid 27.59 46.62 53.63 65.05
same-author + SVM 15.83 24.22 27.33 33.04
same-author + k-NN 15.48 23.70 27.94 32.52
same-author + centroid 14.79 25.52 31.74 42.73
combined - equal weights + centroid 65.73 83.21 87.97 93.42
combined - DE calculated weights + centroid 78.11 91.43 94.03 95.85

Table 1. Accuracies of the algorithms when classifying video lectures.

The results of the third set of experiments showcase the performance of the
methodology presented in this Section. Just as in the second set of experiments,
the results show that the choice of the classification algorithm results in only mi-
nor changes in the classification accuracy compared to the choice of the network
decomposition method. The final two rows of the results show that setting equal
weights to all feature vectors is far from optimal, as it decreases the accuracy
to below that of the best individual feature vector. Using differential evolution,
on the other hand, improves the performance, as this classifier, using optimized
weights and all feature vectors, consistently outperforms other classifiers.



6 Psychology publications categorization case study

We also applied the methodology, presented in Section 4, on almost one mil-
lion scientific publications from the field of psychology. Like the video lectures,
the publications belonged to at least one category from a large set of possible
categories. The size of the constructed network allowed us to measure how clas-
sifier performance increases as we increase the size of the network on which it
is trained. Our motivation was to construct a classifier capable of predicting
all categories of a publication with more probable categories listed first. Such a
classifier may be used to assist in the manual classification of new psychology
articles.

6.1 Data collection

The first step in the construction of a network is data collection. Because there is
no central database containing publications in the field of psychology, we decided
to crawl the Wikipedia pages connected with psychology.

We collected the information about psychology publications from the refer-
ence section of the articles connected to the category Psychology on English
Wikipedia. Due to citation formatting inconsistencies, we extracted only the
references containing their DOI (Digital Object Identifier).

We examined the hierarchical tree of Wikipedia categories, belonging to the
category Psychology. Categories in lower levels of the hierarchy reveal articles
that are connected to psychology, but are also strongly connected to other disci-
plines. Examples include pages from the categories Religion, Evolution, Biology,
etc. We decided to stop our collection at level 5. The decision was based on
the difference between the number of visited categories and the number of yet
uncollected articles at depths 4, 5 and 6. Our final collection therefore includes
all Wikipedia subcategories and pages reached from the top level Psychology
category in 5 or less steps.

Once we collected the set of DOIs connected with psychology on Wikipedia,
we needed a suitable free citation tool that includes academic publications from
the field of psychology, allows a crawling script and offers DOI search. Microsoft
Academic Search (MAS) satisfied these conditions and was selected as our cita-
tion tool. We queried the MAS for each of the collected DOIs. If a publication
was found on MAS, we collected the information about the title, authors, year of
publication, the journal, ID of the publication, IDs of the authors, etc. Whenever
possible we also extracted the publication’s abstract. Additionally, we collected
the same information for all the publications that cite the queried publications.

6.2 Data set

The result of our data collection process was a network consisting of 953, 628
publications of which 63, 862 ‘core publications’ were obtained directly from
Wikipedia pages. Other publications were cited by the core publications. The
publications were linked by 1, 539, 563 citation links and had 1, 589, 144 authors.



The core publications are labeled with the Wikipedia page referencing it. The
remaining publications are labeled with the labels of the core papers citing them.
Each publication may be labeled by several different articles. The publications
were linked by 1, 539, 563 citation links and had 1, 589, 144 authors. We collected
93 977 abstracts of the publications, of which 4551 belong to the core publica-
tions.

The goal of our experiment was to examine the accuracy of a classifier pre-
dicting the labels of publications. To do that, we first decreased the number
of labels. Originally, the publications were labeled with Wikipedia pages, re-
sulting in 71, 606 different labels. The Wikipedia pages were replaced with the
Wikipedia categories listing them, however, this still left us with 3, 173 labels, of
which many, especially the categories visited in the final step of crawling, were
rather obscure. Because of this, we decided to only allow the categories visited
at levels 0, 1 and 2 to represent labels of publications. The categories at level 3,
4, 5 and 6 were transformed into publication labels by climbing up the category
hierarchy to the level 2 categories that link to them. The result is a data set in
which every publication is labeled with one or more Wikipedia categories it is
associated to.

The heterogeneous network was decomposed into three homogeneous net-
works: the paper-author-paper (PAP) network, the paper-cites-paper (PP) net-
work and a symmetric copy of the PP network in which directed edges are
replaced by undirected edges (PPS).

Remark 5. It is not fair to use all homogeneous networks for the prediction
of publication categories. Because the non-core publications were labeled with
labels of core publications that cited them, using the citation graphs (the PP and
the PPS graph) would yield too optimistic error estimation, because it would
use the very structure that was used to label the publications.

Remark 6. We use both the directed and undirected citation network because
both contain information about the publications, but may have very different
effects on the PageRank calculation. In the directed network, a publication will
share its rank with all publications it is citing, while in the undirected case, it
will also share its rank with publications it is cited by. Because the resulting
vectors may contain different information about the publication, we decided to
calculate both and evaluate their performance.

6.3 Experiment description

The settings used to obtain feature vectors is the same as in Section 5. As in
(Grčar et al., 2013), n-grams of size up to 2 and a minimum term frequency
of 0 was used to calculate the BOW vectors. For the calculation of P − PR
vectors the damping factor was set to 0.85, as this is the standard setting also
used in (Page et al., 1999). Where more than one feature vector was calculated,
the vectors were concatenated using weights optimized using the differential
evolution optimization algorithm (Storn and Price, 1997). In all experiments the



calculated featured vectors were used with a centroid classifier using the cosine
similarity distance. This classifier first calculates the centroid vectors of each
class (or category) by summing and normalizing vectors belonging to indices of
that class. For a new instance with feature vector w, it calculates the cosine
similarity distance

d(ci, w) = 1− ci · w,

which represents the proximity of the instance to class i. We classify the instance
into the class for which the distance is the smallest. We also examine the ‘top n’
classifier, where the classifier predicts that the instance belongs to one of the n
classes with the smallest distances. Just like in (Grčar et al., 2013), we consider
a classifier successful if it correctly predicts at least one class with which the
instance is labeled.

We used the centroid classifier for two reasons. First, the experiments pre-
sented in Section 5, show that it performs just as well as the SVM and the
k-nearest neighbor classifier, and second, because for large networks, calculating
all P −PR vectors is computationally too demanding. As shown in (Grčar et al.,
2013), the centroids of classes can be calculated in one iteration of the PageRank
algorithm.

In the first set of experiments we use the publications for which an abstracts
were available. Because most of the 93, 977 selected publications are not core
publications, we construct only two feature vectors for each publication: a bag-
of-words (BOW) vector and a P−PR vector obtained from the PAP network. We
examine how the predictive power of the classifier increases as we use more pub-
lications. We used 10, 000, 20, 000, 30, 000, 40, 000, 50, 000, 70, 000 and 93, 977
publications.

In the second set of experiments we use only the core publications for which
abstracts are available. While this is the smallest data set, it allows us to use
all feature vectors the methodology provides: the BOW vectors and the P −PR
obtained from all three networks (PP, PPS and PAP).

In the third set of experiments all collected papers are used. Because the
papers were labeled using citations, the PP and PPS networks are not used.
Since abstracts are not available for most of the papers, only the P −PR vectors
obtained from the PAP network are used in the classification.

6.4 Evaluation and results

With each of the experiments described in Section 6.3 we predict the labels
of publications. Classification accuracy is measured on the top 1, 3, 5 and 10
labels, proposed by the classifier. For each experiment the data set is split into
a training, validation, and test set. Centroids of classes are calculated using
the training set and concatenated according to the weights optimized using the
validation set. The accuracy of the algorithm (the percentage of papers for which
the label is correctly predicted) is estimated using the test set. The results are
given in Table 2 and Figure 4.
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(a) The centroid classifier using BOW.
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(b) The centroid classifier using PAP.
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(c) The centroid classifier using both BOW
and PAP.

Fig. 4. The classification accuracy of classifiers using different amounts of publications
to predict labels.

The results of the first set of experiments are shown in Figure 4. The per-
formance of the classifier using BOW vectors does not increase with more data,
while the classifier using PAP vectors is steadily improving as more and more
publications are added. The classifier using both BOW and PAP vectors consis-
tently outperforms both individual classifiers, showing the utility of combining
structural information of the network and the content of the publications. As the
performance of the PAP classifier increases, the gap between the BOW classifier
and the classifier using both vectors also increases. The accuracies obtained with
all 93, 977 publications are also shown in the first part of Table 2.

The results obtained in the second set of experiments are shown in the second
part of Table 2. Because more information was extracted from the network, this
is the most comprehensive overview of the methodology. The results show that
using a symmetric citation network (PPS), i.e. spreading the PageRank in both
directions of a citation yields better results than using a non-symmetric citation
network (PP). Combining both the PP and PPS vectors does not improve the
performance of the classifier, which means that the vectors, obtained from the
PP network, carry no information that is not already contained in the PPS net-
work. The same is not true for other vectors. The results consistently show that
including more vectors into the classification increases the prediction accuracy:
using both BOW and PAP is better than simply using BOW, but adding PP
increases the performance even further.

The performance of the PAP classifier on the full network (calculated in
experiment 3 and shown in the last row of Table 2) is higher than PAP results



Setting Top 1 Top 3 Top 5 Top 10

First set Accuracy (%)

BOW + PAP 55.5 75.8 85.6 93.5
PAP 35.6 53.7 66.0 78.3
BOW 49.9 72.6 82.8 92.0

Second set Accuracy (%)

All 78.6 92.4 94.1 97.4
all but BOW 47.7 62.2 71.7 83.0
all but PAP 45.4 57.9 60.4 96.9
all but PP 44.7 74.3 81.7 93.0
all but PPS 59.4 75.9 80.7 94.4
BOW + PAP 78.7 93.0 95.4 97.5
BOW + PP 79.8 93.0 95.5 97.4
BOW + PPS 79.6 93.0 95.5 97.5
PAP + PP 44.5 58.9 69.4 82.3
PAP + PPS 47.5 61.9 70.6 82.0
PP + PPS 44.4 58.4 68.3 78.9
BOW 78.3 92.9 95.6 97.5
PP 40.7 56.9 67.1 77.7
PPS 44.9 59.6 67.9 80.8
PAP 27.5 45.4 58.2 74.7

Third set Accuracy (%)

PAP 38.8 59.3 71.0 81.4
Table 2. Accuracies of the algorithms classifying publications from the field of psy-
chology.

for all other networks, demonstrating that increasing the network size does help
the classification. However, the performance is still lower than that of the BOW
classifier on smaller networks. It appears that authors in the field of Psychology
are not strictly limited to one field of research, making predictions using co-
authorship information difficult.

7 Conclusion and further work

While network analysis is an established field of research, analysis of heteroge-
neous networks is a much newer research area. Methods taking the heterogeneous
nature of the networks into account show improved performance, as shown by,
e.g., Davis et al. (2011). Some methods like RankClus and others presented in
(Sun and Han, 2012) are capable of solving tasks that cannot even be defined
on homogeneous information networks (like clustering two disjoint sets of enti-
ties). Another important novelty is merging network analysis with the analysis
of data, either in the form of text documents or results obtained from various
past experiments presented in (Dutkowski and Ideker, 2011; Hofree et al., 2013;
Grčar et al., 2013).



This chapter presents a methodology for mining text-enriched heterogeneous
information networks which combines the information from heterogeneous net-
works with textual data. Compared to the methods described in Section 3, the
presented methodology combines aspects of network analysis with aspects of
text mining. The methodology is applied to text-enriched heterogeneous net-
works and does not present an alternative, but rather an expanded way of data
analysis, compared to these methods. Thus, many other network analysis tech-
niques, especially those that focus on discovering information about nodes in the
network, can be modified to use it. The presented methodology is comparable
to the methods described in Subsection 3.3, in which data enriched networks are
analyzed with methods that consider both the network structure and the data
enriching the nodes. However, unlike those methods, our methodology deals with
textual information enriching network nodes and thus requires a combination of
network analysis and text mining. While there are many applications in which
text analysis is combined with network mining, they usually apply text analysis
to extract knowledge in the form of a network (see Section 3.3) and then apply
network analysis methods to further analyze it. Unlike these approaches, the
approach presented in this Chapter combines two separate knowledge sources
and joins them into a single representation.

We show-case the performance of the methodology on two data sets. The
results from the VideoLectures.NET data show that using the methodology in-
creases classification accuracy compared to using only texts or only structural
information about the instances. The results from the psychology papers exper-
iment show that the relational information hidden in the network structure is
beneficial to classification and that its usefulness increases for larger networks.

In our experiments on publications from the field of psychology, we only
used a part of information collected about psychology publications. In future,
we plan to examine how to incorporate temporal information into the described
methodology. We have already collected the year of publication which allows us
to observe the dynamics of categories. This additional information may also be
used to improve the classification accuracy.

Our approach uses network enrichment with text data and heterogeneous net-
work decomposition and then combines the produced vectors into a single score.
Alternative is to use Cartesian product of multiple vector spaces to form a tensor
representation as presented by Nickel (2013). The tensor space grows exponen-
tially with the number of dimensions but recently several decompositions have
been proposed which allow processing in a big data setting (Vervliet et al., 2014;
Cichocki, 2014). The suggested decompositions allow multi-relational learning,
which is a path we want to test in our future work.

In further work we plan to use a combination of network analysis and data
mining on a problem of biological networks enriched with experimental data and
texts. An experimental data-enriched heterogeneous network centered around
genes can be constructed in which network information will be enriched with
papers mentioning the genes.
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