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Abstract. Semantic data mining (SDM) uses annotated data and in-
terconnected background knowledge to generate rules that are easily in-
terpreted by the end user. However, the complexity of SDM algorithms
is high, resulting in long running times even when applied to relatively
small data sets. On the other hand, network analysis algorithms are
among the most scalable data mining algorithms. This paper proposes
an effective SDM approach that combines semantic data mining and net-
work analysis. The proposed approach uses network analysis to extract
the most relevant part of the interconnected background knowledge, and
then applies a semantic data mining algorithm on the pruned background
knowledge. The application on acute lymphoblastic leukemia data set
demonstrates that the approach is well motivated, is more efficient and
results in rules that are comparable or better than the rules obtained by
applying the incorporated SDM algorithm without network reduction in
data preprocessing.

1 Introduction

Research into semantic data mining has so far focused on algorithms that pro-
duce complex, high quality rules that describe the data they are applied to. The
complexity of the outputs of SDM algorithms results in a severe performance
bottleneck because the search space in which the algorithms look for rules is
huge, and grows exponentially with the size of the background knowledge. On
the other hand, network analysis is a research field with an abundance of re-
search done to increase the performance and scalability of algorithms, resulting
in algorithms that are capable of analyzing huge networks. The sizes of back-
ground knowledge data used in SDM approaches are usually several orders of
magnitude smaller than the problems typically encountered in network analysis.
While, for example, our SDM algorithm Hedwig in [27] used a set of 337 exam-
ples and a background knowledge containing a total of 21,062 nodes, network
analysis algorithms are capable of handling much larger data sets, composed of
hundreds of millions of nodes.

Despite the large difference in the sizes of data analyzed by network analysis
compared to SDM, the two research fields are not fundamentally incompatible.



In the most basic sense, both fields are interested in the question “Which part
of the network structure is most important to my current interests?”. This pa-
per presents a method that is capable of utilizing aspects of network analysis,
specifically the PageRank algorithm, along with the Hedwig semantic data min-
ing algorithm, to produce high quality rules by only searching a fraction of the
entire background knowledge space.

This paper is structured as follows. The related work is presented in Section
2. Section 3 presents Hedwig, the semantic data mining algorithm we used in the
construction of our new algorithm. Section 4 presents how PageRank, a network
ranking method, can be used to decrease the size of the background knowledge
used by the Hedwig algorithm. Section 5 presents the setup and results of the
experiments run with a method that merges both PageRank and Hedwig. Section
6 concludes the paper and describes further work that can be done to extend
this research.

2 Related work

The related work for this paper consists of research done in several different
fields of research.

Semantic pattern mining. Rule learning, which was initially focused on build-
ing predictive models formed of sets of classification rules, has recently shifted
its focus to descriptive pattern mining. Well-known pattern mining techniques
in the literature are based on association rule learning [2, 21]. While the initial
studies in association rule mining have focused on finding interesting patterns
from large data sets in an unsupervised setting, association rules have been used
also in a supervised setting, to learn pattern descriptions from class-labeled
data [17]. Building on top of the research in classification and association rule
learning, subgroup discovery has emerged as a popular data mining methodology
for finding patterns in class-labeled data, aiming to find interesting patterns as
sets of individual rules that best describe the target variable [14, 29].

Subgroup descriptions in the form of propositional rules are suitable descrip-
tions of groups of instances. However, given the abundance of taxonomies and
ontologies that are readily available, these can also be used to provide higher-level
descriptors and explanations of discovered subgroups. Especially in the domain
of systems biology the GO ontology [5], KEGG orthology [19] and Entrez gene–
gene interaction data [18] are good examples of structured domain knowledge
that can be used as additional higher-level descriptors in the induced rules.

The challenge of incorporating the domain ontologies in data mining was ad-
dressed in recent research on semantic data mining (SDM) [16, 26, 28]. In [28] an
engineering ontology of Computer-Aided Design (CAD) elements and structures
was used as background knowledge to extract frequent product design patterns
in CAD repositories and discovering predictive rules from CAD data. Using on-
tologies, algorithm Fr–ONT for mining frequent concepts expressed in EL++ DL
was introduced in [16]. In [26] we described and evaluated the SDM toolkit that



includes two semantic data mining systems: SDM-SEGS and SDM-Aleph. SDM-
SEGS is an extension of earlier domain-specific algorithm SEGS [24] which allows
for semantic subgroup discovery in gene expression data. SEGS constructs gene
sets as combinations of GO ontology [5] terms, KEGG orthology [19] terms, and
terms describing gene–gene interactions obtained from the Entrez database [18].
SDM-SEGS extends and generalizes this approach by allowing the user to input
any set of ontologies in the OWL ontology specification language and an empir-
ical data collection which is annotated by domain ontology terms. SDM-SEGS
employs ontologies to constrain and guide the top-down search of a hierarchi-
cally structured space of induced hypotheses. SDM-Aleph, which is built using
the inductive logic programming system Aleph [23] does not have the limitations
of SDM-SEGS, imposed by the domain-specific algorithm SEGS. Additionally,
SDM-Aleph can accept any number of OWL ontologies as background knowledge
which is then used in the learning process.

Network node ranking. The task of network node ranking in an informa-
tion network provides means for assigning a score (or rank) to each node in the
network, thus ranking the nodes from the highest to the lowest ranked node.
The most famous ranking algorithm is the PageRank algorithm [20] used by the
Google search engine, however several other network raking methods have been
proposed such as a weighted version of the PageRank method called Weighted
PageRank [30], as well as the related Hubs and Authorities method [13]. Another
method to rank nodes in the network is to use centrality measures, for exam-
ple using Freeman’s network centrality [8], betweenness centrality [7], closeness
centrality [4] and the Katz centrality measure [12].

Previous work on acute lymphoblastic leukemia. In the analysis we ex-
plored the acute lymphoblastic leukemia (ALL) data set used in a previous
publication. We followed the steps used in [22] to obtain a set of 1, 000 enriched
genes from a set of 10, 000 genes. The enriched genes were annotated by concepts
from the Gene Ontology [3] which formed the background knowledge for our ex-
periments. The original publication analyzing the ALL data set compared the
performance of the DAVID [10] algorithm and the SegMine algorithm. In this
work, however, we used the same data set to measure how we can improve the
performance of the Hedwig algorithm, the algorithm which was already shown to
perform well in a biological setting. The goal of this work is to examine whether
network node ranking can decrease the runtime and improve the performance of
the Hedwig algorithm.

3 Semantic data mining

This section describes the recently developed semantic subgroup discovery sys-
tem Hedwig [27]. Compared to standard subgroup discovery algorithms, Hedwig
uses domain ontologies to structure the search space and formulate generalized



hypotheses [27]. Existing semantic subgroup discovery algorithms are either spe-
cialized for a specific domain [25] or adapted from systems that do not take into
the account the hierarchical structure of background knowledge [26]. Hedwig
overcomes these limitations as it is designed to be a general purpose semantic
subgroup discovery system.

In addition to a financial use case [27], Hedwig was already shown to per-
form well in a biological setting, namely analyzing DNA aberration data for
various cancer types [1], where it was part of a three-step methodology, to-
gether with mixture models and banded matrices. In the analysis, additional
background knowledge was used in the form of several ontologies: hierarchical
structure of multiresolution data, chromosomal location of fragile sites, virus in-
tegration sites, cancer genes, and amplification hotspots, obtained from various
sources.

Semantic subgroup discovery, as addressed by the Hedwig system, results
in relational descriptive rules. Hedwig uses ontologies as background knowledge
and training examples in the form of Resource Description Framework (RDF)
triples. The semantic data mining task addressed in this work takes as inputs
the empirical data in the form of a set of training examples expressed as RDF
triples, domain knowledge in the form of ontologies, and an object-to-ontology
mapping which associates each object from the RDF triplets with appropriate
ontological concepts, and finds a hypothesis (a predictive model or a set of de-
scriptive patterns), expressed by domain ontology terms, explaining the given
empirical data.

Subgroup describing rules are first-order logical expressions. Consider the fol-
lowing rule, used to explain the format of induced subgroup describing rules, such

as, for example: Class(X) ← C1(X), R(X,Y), C2(Y) with True Positives

(TP )=80 and False Positives (FP )=20. Variables X, Y represent sets of input
instances, R is a binary relation between the examples and C1, C2 are ontolog-

Input : Input examples E, background knowledge B, target class value c,
beam size k, p-value threshold α

Output: Set of rules

1 rules← [default rule(E, c, B)]

2 while improvement(rules) do
3 // Add specializations of each rule to the beam

4 for rule ∈ rules do
5 extend(rules, specialize(rule, B))

6 end
7 rules← best(rules, k) // Select the top k rules

8 end
9 rules← validate(rules, α) // Significance testing

10 return rules

Algorithm 1: Hedwig’s induce(E, B, c, k, α) procedure.



ical concepts. This rule is interpreted as follows. If an example X is annotated
with concept C1, and is related with an example Y via R, and Y is annotated
with concept C2, then the conclusion Class(X) holds. This rule condition is true
for 100 input instances (TP + FP , also called coverage), 80 of which are of the
target class (TP, also called support).

We implemented the algorithm described in Figures 1 and 2 to search for
interesting subgroups. The Hedwig system, which implements this algorithm,
supports ontologies and examples to be loaded as a collection of RDF triples
(a graph). The system automatically parses the RDF graph for the subClassOf

hierarchy, as well as any other user-defined binary relations. Hedwig alsodefines a

Input : Rule to specialize rule, background knowledge B
Output: Set of specializations of rule

1 specializations← []
2 // Predicates that can be specialized

3 eligible preds← eligible(predicates(rule))

4 for predicate ∈ eligible preds do
5 // Specialize by traversing the subClassOf hierarchy

6 for subclass ∈ subclasses(predicate, B) do
7 new rule← swap(rule, predicate, subclass)
8 if can specialize(new rule) then
9 append(specializations, new rule)

10 end

11 end
12 // Specialize by negating

13 new rule← negate(rule, predicate)
14 if can specialize(new rule) then
15 append(specializations, new rule)
16 end

17 end

18 if rule 6= default rule then
19 // Specialize by adding a new unary predicate

20 new predicate← next non ancestor(eligible preds)
new rule← append(rule, new predicate)

21 if can specialize(new rule) and non redundant(new rule) then
22 append(specializations, new rule)
23 end

24 end

25 if is unary(last(predicates(rule))) then
26 // Specialize by adding new binary predicates

27 extend(specializations, specialize binary(new rule))

28 end

29 return specializations

Algorithm 2: Hedwig’s specialize(rule, B) procedure.



namespace of classes and relations for specifying the training examples to which
the input must adhere.

The algorithm uses beam search, where the beam contains the best N rules
found so far. It starts with the default rule which covers all the input examples.
In every iteration of the search, each rule from the beam is specialized via one
of the four operations: (1) Replace predicate of a rule with a predicate that is a
sub-class of the previous one, (2) negate predicate of a rule, (3) append a new
unary predicate to the rule, or (4) append a new binary predicate, introducing
a new existentially quantified variable.5

Rule induction via specializations is a well-established way of inducing rules,
since every specialization either maintains or reduces the current number of
covered examples. A rule will not be specialized once its coverage is zero or falls
below some predetermined threshold. When adding a new conjunction, we check
that if the extended rule does not improve the probability of the conclusion (we
use the redundancy coefficient, as in [11]), then it is not added to the pool of
specializations. After the specialization step is applied to each rule in the beam,
we select new set of the best scoring N rules. If no improvement is made to the
collection of rules, the search is stopped. In principle, our procedure supports any
rule scoring function. Numerous rule scoring functions (for discrete targets) are
available: χ2, precision, WRAcc [15], leverage and lift. The latter is the default
choice and was also used in our experiments. After the induction phase, the
significance of the findings is tested using the Fisher’s exact test [6]. To cope
with the multiple-hypothesis testing problem, we use Holm-Bonferroni [9] direct
adjustment method with α = 0.05.

4 Using network node ranking to decrease background
knowledge size

We used network ranking, in particular the personalized PageRank [20] algo-
rithm, to asses the importance of each node in the background knowledge. The
personalized PageRank of a set of nodes S (P-PRS) in a network is defined as
the stationary distribution of the position of a random walker who starts the
walk in a randomly chosen member of S and then at each step either selects one
of the outgoing connections or teleports back to a randomly selected member
of S. The probability (denoted p) of continuing the walk is a parameter of the
personalized PageRank algorithm and is usually set to 0.85.

The fundamental idea in our algorithm is that the PageRank method can
be used to assess the relevance of a given background knowledge node for a
particular experiment, and that Hedwig and other SDM algorithms are more
likely to use highly relevant nodes when constructing rules. Therefore, if we allow
the SDM algorithms to construct rules using only the most important nodes, the
quality of the rules should increase. At the same time, because the background

5 The new variable needs to be ‘consumed’ by a literal to be added as a conjunction
to this clause in the next step of rule refinement.



knowledge is decreased in size, the SDM algorithm we use to construct the rules
will have to search through a significantly reduced space of possible rules and
should therefore take much less time to conclude.

The algorithm (described in pseudo-code as Algorithm 3) consists of three
steps. In the first step, we construct a network which we will use to assess
the importance of background knowledge nodes. We begin with a background
knowledge represented as a graph G = (V,E), where V is the set of nodes
and E a set of edges, and a data set S we wish to analyze. The data set S is
split into a set of positive examples S+ and a set of negative examples S−, i.e.
S+ ∪ S− = S, S+ ∩ S− = ∅. Each example s ∈ S is annotated with some set of
background knowledge nodes.

From G and S, we construct a new network G′ = (V ′, E′) by taking the
original network G and adding all positive examples to the set of background
knowledge nodes (in other words, we set V ′ = V ∪ S+), connecting them to
background knowledge nodes through the annotations (E′ = E ∪ {(e, a) ∈ S ×
V |annotation a annotates example e})

In the second step of the algorithm, we decrease the size of the background
knowledge network G by removing less important nodes. We calculate the per-
sonalized PageRank values of the nodes in the expanded network G′, setting the
starting nodes of for the iteration to all nodes in S This allows the pagerank
values to flow from the data set examples to the nodes that annotate them. The
background knowledge network is then decreased by removing from it all but
the top t percent of nodes, where t is the selected threshold and a parameter of
our algorithm. We thus create a new background knowledge network Gs whose
nodes consist of a subset of V and whose edges are induced by the edges in E.

In the final step, we use the Hedwig algorithm to construct rules, consisting
of conjuncts of nodes in Gs, that best describe the set S+.

Data: Background knowledge network G and set of examples S annotated
with nodes from G

Result: Rules describing the positive examples
1 Parameters: PageRank restart probability p ∈ [0, 1], Cutoff percendate
c ∈ [0, 1] Set G′ = {g ∈ G : ∃e ∈ S : e is annotated by g};

2 Calculate r = PPRG;
3 for node g ∈ G do
4 if |{g′ ∈ G : r(g′) > r(g)}| > c · |G| then
5 remove node g from G.
6 end

7 end
8 Run semantic data mining on S using the pruned G as background

knowledge return Rules, discovered by the SDM algorithm on the pruned
background knowledge

Algorithm 3: The proposed network ranking supported semantic data
mining algorithm



5 Experiments

The experimental setup of our work consisted of two steps. In the first set of
experiments, we ran the Hedwig algorithm on the data set to determine the
baseline performance of the algorithm. We ran the algorithm with several settings
of depth and beam width. The results of this round of experiments are shown in
Table 1 and show that consistently, the gene ontology nodes that appear in the
discovered rules have a PageRank value that is highly above normal.

The rules, discovered in this round of experiments, are also biologically sig-
nificant. In all three settings when the search beam for the algorithm was set to
1, the only significant rule discovered was the gene ontology term GO:3674, a
term denoting molecular function. This is a very broad term which offers little
insight and shows that a larger search beam is necessary in order for Hedwig to
make significant discoveries. The most interesting results are the results uncov-
ered when the beam size is set to 10 and the support is set to 0.01. When the
depth is set to 1 , the most important term GO:50851 (antigen receptor-mediated
signaling pathway) is interesting as it relates to the immune system related cell
type. When searching with a depth of 10, we discovered a conjunct of four terms:
immune system process (GO:2376), immune response-activating cell surface re-
ceptor signaling pathway, (GO:2429), plasma membrane (GO:5886) and binding
(GO:5488). This conjunct is interesting as it begins to provide some additional
insight of the action (binding), effect (immune response signalling pathway), and
location (plasma membrane).

In the second round of experiments, we decreased the size of the background
data by removing low ranking nodes. We calculated the PageRank value of the
GO nodes in two ways: in the first, we viewed is a relations as directed edges
pointing from the more specific GO term to the more general term. In the second,
we viewed the relations as undirected edges. We ran the Hedwig algorithm on a
gene ontology backgorund data set containing only the 5%, 10%, 20% and 50% of
nodes with the highest PageRank value. We also only focused on setting the size

Rule [ranking] Beam Depth Support Lift
GO:3674[0.0046] 1 1 0.01 1
GO:3674, [0.0046] 1 10 0.01 1
GO:50851, [0.7368] 10 1 0.01 2.687
GO:2376 [0.16047], GO:2429[0.6880],
GO:5886 [0.0790], GO:5488[0.0070]

10 10 0.01 3.42

GO:3674, [0.0046] 1 10 0.1 1
GO:2376, [0.1604] 10 1 0.1 1.292
GO:2376 [0.1604], GO:5488 [0.0070]
GO:48518[0.4277]

10 10 0.1 1.414

GO:2376 [0.1604],GO:5488 [0.0070]
GO:48518 [0.4277]

10 10 0.1 1.414

Table 1. Best rules discovered by the Hedwig algorithm for the ALL data set. Each
row presents the conjuncts (Gene Ontology terms) of the top ranking rule. The number
in parentheses is the percentage of GO terms with a PageRank higher than the term in
the rule. The numbers are remarkably low, showing that Hedwig consistently constructs
rules with the top 1% GO terms as ranked by the PageRank algorithm.



Cutoff Rules Beam Depth Support Lift
0.05 GO:50851 10 1 0.01 2.687
0.1 GO:50851 10 1 0.01 2.687
0.2 GO:50851 10 1 0.01 2.687
0.5 GO:50851 10 1 0.01 2.687
1 GO:50851 10 1 0.01 2.687
0.05 GO:2376, GO:2694, GO:34110 10 10 0.01 3.235
0.1 GO:2376, GO:2694, GO:44459 10 10 0.01 4.09
0.2 GO:3824, GO:44283, GO:44444 10 10 0.01 4.257
0.5 GO:2376, GO:2429 GO:5886 GO:5488, 10 10 0.01 3.42
1 GO:2376, GO:2429, GO:5886, GO:5488 10 10 0.01 3.42
0.05 GO:43234 10 1 0.1 1.521
0.1 GO:43234 10 1 0.1 1.543
0.2 GO:43234 10 1 0.1 1.506
0.5 GO:2376 10 1 0.1 1.292
1 GO:2376 10 1 0.1 1.292
0.05 GO:43234, GO:44464 10 10 0.1 1.537
0.1 GO:65007, GO:43234, GO:44424 10 10 0.1 1.655
0.2 GO:16020, GO:43234, GO:8150 10 10 0.1 1.709
0.5 GO:2376, GO:5488, GO:48518 10 10 0.1 1.414
1 GO:2376, GO:5488, GO:48518 10 10 0.1 1.414

Table 2. The best rules discovered by the Hedwig using a truncated Gene Ontology as
background knowledge. A cutoff value of 0.05 means that only ontology terms ranking
in the top 5% were used in rule construction. The rank was calculated by calculating
the PageRank value and viewing relations as directed edges.

of the beam for the search to 10, as the results of the first round of experiments
showed that the rules obtained by setting it to 1, are too vague to be of any
biological interest.

The results of the second round of experiments are shown in Table 2 and Ta-
ble 3. Both tables show a similar phenomenon: by decreasing the cutoff threshold
the rules discovered by the Hedwig algorithm either stay the same or change to
other rules with a higher lift value. For example, when searching for rules with
depth set to 1, the same GO term, GO:50851, is discovered even when the size
of the network is reduced to only 5% of the original network. When searching for
longer rules, decreasing the size of the network by 50% still allows us to discover
the same high quality conjunct of GO:2376, GO:2429, GO:5886 and GO:5488
as before, however decreasing the size further leaves a conjunct of GO:3824,
GO:44283, GO:44444, GO:44238 which is more vague and less interesting.

While the increasing rule quality alone shows that using PageRank as a
filter before applying the Hedwig algorithm can improve the performance of the
algorithm, the results become even more promising if we also consider the fact
that in the case when the cutoff threshold is low, the search space that Hedwig
must analyze, and thus the computational complexity of the algorithm, is much
smaller.

6 Conclusion and further work

The results show that network analysis method PageRank can be effectively
used to reduce the size of the search space that needs to be examined by SDM



Cutoff Rules Beam Depth Support Lift
0.05 GO:50851 10 1 0.01 2.687
0.1 GO:50851 10 1 0.01 2.687
0.2 GO:7584 10 1 0.01 1.811
0.5 GO:50851 10 1 0.01 2.687
1 GO:50851 10 1 0.01 2.687
0.05 GO:3824, GO:44283, GO:44444, GO:44238 10 10 0.01 3.741
0.1 GO:3824, GO:44283, GO:44444, GO:44238 10 10 0.01 3.769
0.2 GO:45936, GO:3824, GO:9892 10 10 0.01 2.219
0.5 GO:2376, GO:2429, GO:5886, GO:5488 10 10 0.01 3.42
1 GO:2376, GO:2429, GO:5886, GO:5488 10 10 0.01 3.42
0.05 GO:3824 10 1 0.1 1.322
0.1 GO:43234 10 1 0.1 1.334
0.2 GO:43234 10 1 0.1 1.524
0.5 GO:2376 10 1 0.1 1.296
1 GO:2376 10 1 0.1 1.292
0.05 GO:3824, GO:44444, GO:44710, GO:44238 10 10 0.1 1.725
0.1 GO:3824, GO:44444, GO:44710, GO:44238 10 10 0.1 1.744
0.2 GO:48518, GO:43234, GO:5488 10 10 0.1 1.721
0.5 GO:3824, GO:44444, GO:44710, GO:44238 10 10 0.1 1.639
1 GO:2376, GO:5488, GO:48518 10 10 0.1 1.414

Table 3. Table showing the second version of the experiment. The meaning of the
rows is the same as in Table 2, but this time, the PageRank of terms was calculated
by viewing relations as undirected edges.

methods without reducing their performance. Furthermore, the performance is in
some cases even increased. This means that the proposed algorithm improvement
approach shows great promise for future use of computationally expensive, but
highly informative algorithms such as Hedwig, on data sets much larger than
the ones used today.

In future work, we plan a more comprehensive examination of how the per-
formance of Hedwig compares to existing enrichment methods like the SegMine
method used in [22]. The comparison will be run on several biological data sets,
including a data set of responses of rheumatoid arthritis patients to drug treat-
ment.

Furthermore, we wish to perform further experiments with different methods
of network reduction. For example, other network ranking methods or even other
network analysis methods, such as community detection, can be used to identify
the most relevant part of the background knowledge network. Also, network
shrinking in our experiments was done in a basic way by simply removing all
nodes whose PageRank value was too low and the edges that start or end in
them. This method may cause some high ranking nodes to get “cut off” from
the rest of the network, making them uninteresting for the Hedwig algorithm. In
such a case, a better way may be to remove low ranking nodes, but keep the edges
that start or end in them and simply extend these edges to the deleted node’s
neighbors. Furthermore, we will run other experiments testing the performance
of our algorithm using different settings for the Hedwig algorithm.
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