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Blaž Škrlj · Jan Kralj · Nada Lavrač
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Abstract Modern data mining algorithms frequently need to address learning from
heterogeneous data and knowledge sources, including ontologies. A data mining task
where ontologies are used as background knowledge in data analysis is referred to
as semantic data mining. The specific task we address is semantic subgroup discov-
ery, allowing for ontology terms to be used in induced subgroup describing rules.
This paper proposes Community-Based Semantic Subgroup Discovery (CBSSD) as
means to advance ontology-based subgroup identification by taking into account also
the structural properties of induced complex networks related to the studied phe-
nomenon. Following the idea of multi-view learning, which builds on using different
sources of information to obtain better models, the proposed CBSSD approach can
leverage different types of nodes of the induced complex network, such as simulta-
neously using information from multiple levels of a biological system. The approach
was tested on ten data sets consisting of genes related to complex diseases, as well as
core metabolic processes. The experimental results show that the CBSSD approach
is scalable, applicable to large complex networks, and that it can be used to identify
significant combinations of terms, which could not be uncovered by standard term
enrichment analysis approaches.
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1 Introduction

Modern machine learning approaches are capable of using continuously increasing
amounts of information to explain complex phenomena in numerous fields, includ-
ing biology, sociology, mechanics and electrical engineering. As there can be many
distinct types of data associated with a single phenomenon, novel approaches strive
towards the integration of different, heterogeneous data and knowledge sources, as
data used in building predictive or descriptive models [11].

In such settings, prior knowledge can play an important role in the develop-
ment and deployment of learning algorithms in real world scenarios. Background
knowledge can come in many forms, which introduces additional complexity to the
modeling process, yet can have a great impact on the model’s performance. For ex-
ample, Bayesian methods can be leveraged to incorporate knowledge about prior
states of a system, i.e. prior distributions of random variables being modeled. Such
methods are in widespread use, e.g., in the field of phylogenetics, where Bayesian
inference is used for reconstruction of evolutionary trees [20]. Background knowledge
can also be encoded more explicitly, as an additional knowledge source to be used
in learning the models. Machine learning research that relies on the use of explicitly
encoded background knowledge includes relational data mining [22] and inductive
logic programming (ILP) [39]. In ILP, background knowledge is used along with the
examples to derive hypotheses in the form of logical rules, which explain the positive
examples.

A special form of background knowledge are ontologies, which can be used to
guide the rule learning process. Semantic subgroup discovery (SSD) [37, 59] is a field
of rule learning, which uses ontologies as background knowledge in the subgroup
discovery process, aimed at inducing rules from classification data. Here, class labels
denote the groups for which descriptive rules are to be learned.

In this work we use the formalism of complex networks to represent the stud-
ied interactions [13]. They consist of nodes (i.e. proteins) and edges (i.e. interactions
between proteins). Real world networks often contain communities, or other topolog-
ical structures of interest, which correspond to functional properties of the network
[55, 21]. We propose a methodology, where iteratively constructed complex networks
are used as input to identify relevant subgroups by network partitioning, followed by
semantic subgroup discovery. We experimentally demonstrate that new knowledge
can be obtained using existing, freely accessible heterogeneous data in the form of
complex networks and ontologies.

Community-based Semantic Subgroup Discovery is to our knowledge one of the
first attempts, where we address the issue of learning from complex networks by
using semantic subgroup discovery. Further, the developed approach is scalable, and
offers the opportunity to investigate interaction between different semantic (GO)
terms.

This paper is a significant extension of our previous work [53]. We more thor-
oughly describe the theoretical background and contribute to a better understanding
of representing network partitions in a machine learning setting. Next, in addition to
community-based network partitioning, we investigate also component-based parti-
tioning. Moreover, we also perform a quantitative evaluation of the proposed CBSSD
methodology compared to standard enrichment analysis approaches.

After presenting the background and related work in Section 2, the subsequent
sections present the theoretical (Section 3), as well as empirical aspects of the pro-
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posed CBSSD methodoloy. We test the use of the new approach on 10 different life
science data sets, i.e. expert defined gene sets, where the CBSSD methodology is
quantitatively compared to the existing enrichment analysis approaches (Section 5).
Section 6 demonstrates the qualitative utility of the proposed CBSSD methodology
on two real world data sets from the life science domain. The experimental evaluation
of the methodology is followed by a discussion on the obtained results in Section 7,
which also presents the plans for further work.

2 Background and related work

This section introduces relevant concepts from the fields of complex networks, enrich-
ment analysis, semantic data mining, subgroup discovery and multi-view learning.

2.1 Complex networks

Many natural phenomena can be described using graphs. They can be used to model
physical, biological, chemical and mechanical systems [47, 61]. Complex networks are
graphs with distinct, non-trivial, real world topological properties [13]. Real world
networks can be characterized with distinct statistical properties regarding their
node degree distribution, component distribution or connectivity [55].

Despite extensive efforts to understand complex networks from a physical stand-
point, methods for associating the distinct topological features of real-life networks
with existing knowledge remain poorly investigated. Such methodology can provide
valuable insights into functional organization of otherwise incomprehensible quantity
of topological structures, which commonly occur in, e.g., biological or transportation
networks.

Complex networks are commonly used in modeling systems, where extensive
background knowledge is not necessarily accessible. Motif finding, community detec-
tion and similar methods can provide valuable insights into the latent organization
of the observed network [18]. Such networks are also known to include many commu-
nities, i.e. smaller, distinct units of a network that correspond to subsets of network
nodes with dense connections between nodes within the subset and sparse connec-
tions between nodes in the subset and other nodes in the network [21] Communities
can be detected with random walk-based sampling, spectral graph properties or
other network properties [42, 36]. In this work we focus mostly on two community
detection algorithms, the Louvain algorithm and the InfoMap algorithm.

2.1.1 Louvain algorithm

The Louvain algorithm [9, 10], defined on undirected networks, is based on the net-
work modularity measure Q [12] defined for a network partitioned into communities
as follows:

Q = 1
2m

n∑
v=1

n∑
w=1

[
Av,w −

kvkw
2m

]
δ(cv, cw) (1)

where n represents the number of nodes and m the number of edges, [Av,w]nv,w=1
denotes the adjacency matrix (i.e. Av,w is 1, when u and v are connected by an
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edge, and 0 otherwise), kv denotes the degree of the v-th node and cv denotes the
community the v-th node is assigned to. The δ(cv, cw) represents the Krönecker
delta function, which amounts to 1 when cv = cw and 0 otherwise. The value kvkw

2m
represents the average fraction of edges between nodes v and w in a random graph
with the same node degree distribution as the considered graph. The modularity
value Q will be high if most connections in the graph are between nodes assigned to
the same community. The Louvain algorithm discovers the partitioning of nodes into
communities for which the value Q is maximized using a greedy, non-exact procedure
that runs in O(n log(n)). We refer the interested reader to [10] for more information
on the algorithm.

2.1.2 InfoMap algorithm

Many real world networks contain different types of nodes (i.e. node layers). When
connections between different types of nodes are taken into account, new form of dy-
namics can emerge, which yields e.g., otherwise non-detectable community structure
[29]. To account for such heterogeneity, our methodology can also account for such
an organization without additional simplification of the network. For such tasks, we
leverage the state-of-the-art InfoMap algorithm for multilayer community detection
[49].

The InfoMap algorithm is based in the idea of minimal description length of the
walks performed by a random walker traversing the network. we describe its move-
ments using words from m community codebooks (describing movements within a
given community) and one index codebook (describing movements between commu-
nities). Assuming the codebooks are constructed using Huffman coding [33] (a form
of optimal lossless compression), let Hi represent the frequency-weighted average
length of encoded random walks in community codebook i and Hq represent the
frequency-weighted average length of codewords in the index codebook. The value of
L(M) therefore corresponds to the average length of the entire codeword describing
the movement of the random walker. The idea is that the network partition that
gives the shortest description length best captures the community structure of the
network with respect to the dynamics on the network—such partition intuitively
traps random walkers within individual communities.

The objective of the InfoMap algorithm is to minimize the community description
length, a property corresponding to lengths of codewords (i.e. binary codes of nodes
that encode the node) describing the movement of a random walker traversing the
network. Its main objective function is formulated as the map equation:

L(M) = qxHq +
m∑
i=1

pi�Hi (2)

where M is a partitioning of the network into communities, and m = |M |. The
value qx represents the total probability that the random walker enters any of the
communities M . For a community i ∈M , pi� represents the total probability that a
node, visited by the random walker, is in community i, plus the probability that the
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random walker exits community i. The values Hq and Hi are calculated as

Hq = −
m∑
i=1

qix
qx

log
(
qix
qx

)
Hi = −qiy

pi�
log
(
qiy
pi�

)
−
∑
α∈i

pα
pi�

log
(
pα
pi�

)
where qix, qiy are rates at which the random walker enters and exists community i
and pα is the probability that the random walker will be at node α.

In this work we also investigate how multiplex variation of the InfoMap algorithm
can be used for network partitioning. Here, connections between different types of
nodes can be taken into account, which often yields different community partitioning
compared to the standard InfoMap. Detailed description of the multiplex variation
of the InfoMap is given in Appendix A.

2.2 Knowledge graphs

Apart from complex networks, this work relies heavily on the notion of knowledge
graphs. Compared to complex networks, knowledge graphs consist of relation-labeled
edges, such as the following example:

protein
interactsWith−−−−−−−−→ protein

annotatedWith−−−−−−−−−→ domain. (3)

Knowledge graphs are commonly used as a source of knowledge for understanding
other phenomena, where annotations are not accessible (e.g., real-world complex
networks). As knowledge graphs consist of defined relations between defined entities
(nodes of knowledge graphs), inductive logic programming algorithms can be used
to traverse and learn more general, interpretable rules.

Knowledge graphs, built by domain experts are also known as ontologies [28].
The challenge of incorporating domain ontologies in the data mining process has
been addressed in the work on semantic data mining (SDM) [38].

It remains an open question as to whether it is possible to implement computa-
tionally feasible semantic data mining approaches, which can leverage both complex
networks, as well as knowledge graphs related to the studied phenomenon, to simul-
taneously learn descriptions in form of rules of different generality, i.e. as general
as possible, and/or as specific as possible. The obtained rules can offer additional
context as they, compared to standard statistical tests, consist of multiple terms.

2.3 Enrichment analysis

Enrichment analysis (EA) techniques are statistical methods used to identify expla-
nations for a set of entities based on over- or under-representation of their attribute
values, which can be referred to as differential expression. In gene expression analy-
sis, sets of differentially expressed genes are considered, and the approach is referred
to as gene set enrichment. For example, Schipper et al [51] used miRNA expression
profiles to obtain sets of genes, which were further studied to understand Alzheimer’s
disease in terms of transcription/translation and synaptic activity.
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In life sciences, gene enrichment analysis is widely used with the Gene Ontology
(GO) [3] to profile the biological role of genes, such as differentially expressed cancer
genes in microarray experiments [57]. While standard EA looks at individual ontology
terms (term enrichment) to provide explanations in terms of concepts/terms of a
single ontology, researchers are increasingly combining several ontologies and data
sets to uncover novel associations. Such efforts are needed, as different aspects of
e.g., biological systems are studied by different research communities, resulting in
multiple ontologies, each describing different aspects of a system from a different
perspective. The ability to detect patterns in data sets that use sources other than
the Gene Ontology can yield valuable insights into diseases and their treatment.

Enrichment of sets of genes can be studied also based on topological properties
of complex networks. Here, a set of nodes—representing some network community,
certain network component or some other topological structure that emerges in real-
life networks—can be considered as a set of terms to be studied with enrichment
analysis methods. Such statistics-based enrichment is widely used in fields such as
social science and bioinformatics. For example, Alexeyenko et al [2] demonstrate an
extension of gene set enrichment by using gene-gene interactions, List et al [40] pro-
pose a component-based enrichment approach and Dong et al [19] propose LEGO, a
network-informed enrichment approach where network-based gene weights are used.

2.4 Semantic data mining

Semantic data mining can discover complex rules describing subgroups of data in-
stances that are connected to terms (annotations) of an ontology, where the ontol-
ogy is referred to as background knowledge used in the learning process. An example
SDM problem is to find subgroups of enriched genes in a biological experiment, where
background knowledge is the Gene Ontology [3]. We begin the discussion on semantic
data mining by describing RDF graph formalism, used to represent semantic infor-
mation. Next, we discuss three different use cases of how RDF-based knowledge was
used to aid data mining approaches.

Formally speaking, semantic data mining (SDM) [58] is a field of machine learn-
ing that employs curated domain knowledge in the form of ontologies as background
knowledge used in the learning process. An ontology can be represented as a data
structure consisting of semantic triplets T (S, P,O), which represent the subject, its
predicate and the object. Such triplets form directed acyclic graphs. Resource De-
scription Format (RDF) hypergraph is a data model commonly used to operate at
the intersection of data and the ontologies.

There are many approaches, which use background knowledge in the form of
ontologies to obtain either more accurate or more general results. First, knowledge
in the form of ontologies can represent constraints, specific to a domain. It has been
empirically and theoretically demonstrated that using background knowledge as a
constraint can improve classification performance [4]. The RDF framework provides
also the necessary formalism to leverage the graph-theoretic methods for ontology
exploration. Network mining approach was used to discover indirectly associated
biomedical terms. Here, Liu et al [41] developed a methodology, used to discover and
suggest corrections for misinformation in biomedical ontologies.

Semantic clustering is an emerging field, where semantic similarity measures are
used to determine the clusters using the background knowledge, in a manner simi-



CBSSD: Community-Based Semantic Subgroup Discovery 7

lar to, for example, k-means family of clustering algorithms. Semantic clustering is
frequently used in the area of document clustering [31].

Large databases in the form of RDF triplets exist for many domains. For exam-
ple, the Bio2RDF project [5] aims at integrating all major biological databases and
joining them under a unified framework, which can be queried using SPARQLQ—a
specialized query language. The BioMine methodology is another example of large-
scale knowledge graph creation, where biological terms from many different databases
are connected into a single knowledge graph with millions of nodes [23]. Despite such
large amounts of data being freely accessible, there remain many new opportunities
to fully exploit their potential for knowledge discovery.

2.5 Semantic subgroup discovery

Semantic subgroup discovery (SSD) [37, 59] is a field of subgroup discovery, which
uses ontologies as background knowledge in the subgroup discovery process, aimed
at inducing rules from classification data. Here class labels denote the groups for
which descriptive rules are to be learned. In semantic subgroup discovery, ontolo-
gies are used to guide the rule learning process. For example, the Hedwig algorithm
[1, 59] accepts as input a set of class labeled training instances, one or several domain
ontologies, and the mappings of instances to the relevant ontology terms. Rule learn-
ing is guided by the hierarchical relations between the considered ontology terms.
Hedwig is capable of using an arbitrary ontology to identify latent relations explain-
ing the discovered subgroups of instances. The result of the Hedwig algorithm are
descriptions of target class instances as a set of rules of the form TargetClass ←
Explanation, where the rule condition is a logical conjunction of terms from the
ontology. A detailed description of the Hedwig algorithm is given in Appendix B.

2.6 Multi-view learning

Multi-view learning represents the idea of learning using different approaches and
different data sources. It is becoming an increasingly relevant topic, as systems such
as multi-scale biological networks, transportation routes, or deep neural networks
can only be understood when different aspects are studied simultaneously [63]. In
a common multi-view setting, the data corresponding to the studied system comes
in different forms. One of the possible goals is to learn a joint representation using
all available sources of information (e.g., audio, video and sound). Further, differ-
ent approaches are necessary to process different types of data or yield results of
different generality. The latter is one of the main aspects of this work. Extensive
collections of biological information have been previously analysed using ideas from
multi-view learning. For example, Alexeyenko et al [2] propose a method, which apart
from single genes computes enrichment of subsets of genes. The recently introduced
KeyPathwayMinerWeb [40] offers similar functionality when focusing on network’s
components, i.e. connected subgraphs. Finally, the EnrichNet approach developed by
Glaab et al [27] offers a web-based interface for qualitative exploration of expression
profiles alongside biological pathways, i.e. networks of interacting proteins.

The discussed methods extend the standard term enrichment paradigm with
different, network-based views, yet are application-specific, and as such not nec-
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essarily flexible enough for modern heterogeneous biological networks. One of the
goals of this work is to offer a general computational framework for learning from
network partitions using arbitrary background knowledge collections. Furthermore,
we demonstrate its use on biological networks, where multiple different aspects (e.g.,
gene and protein interactions, publications and domain annotations) are used to
learn from complex networks.

3 Theoretical background and setting

This section discusses the relationship between network analysis and rule learning,
starting with the preliminaries on rule learning and network partitions, and followed
by our own contribution to explaining the problem setting.

3.1 Theoretical background

3.1.1 Rule learning preliminaries

A supervised machine learning task can be defined as follows: Given a set of classes
T and a set of class labeled data instances D, the goal is to approximate the mapping
Θ : D → T , which can explain/predict instances d ∈ D. In this work, we focus on
rule learning algorithms.

Definition 1 Let R denote a set of all rules that can be learned from given D and T .
In rule learning, best rules r1,...,n ∈ R are found by optimizing a predefined success
criterion evaluated using a scoring function ε, that assigns each identified rule ri a
corresponding score, i.e. ε : ri → R.

In this work we focus on subgroup discovery, a subfield of supervised descriptive
rule induction [45]. Here, learner Θ is given the data set D labeled with target classes
from T , and comparable to supervised learning, aims at identifying and describing
interesting subsets of D, corresponding to the selected target t ∈ T . Instead of a
predictive model, the final result of descriptive learning are sets of rules, explaining
a subset of positive examples of selected class t. In general, the optimal set of rules
is obtained by maximizing rule quality, for a single rule defined as follows:

ropt = arg max
ri∈R

[
ε(ri)

]
.

This criterion is e.g., used when coverage-based approaches are considered [24].
In this work we follow a different, recently introduced rule learning paradigm

[60], which does not use a covering approach. instead, subgroup describing rules are
learned using a specialized beam search procedure [59], and the output is a set of b
rules in the final beam of size b=|Beam|.

For an interested reader we here explain the formulation for rule induction used by
the Hedwig algorithm, described in detail in Appendix B. The presented formulation
consists of two distinct objectives; rule uniqueness and rule quality, which together
form the joint scoring function as follows:

Ropt = arg max
R

∑
r∈R ε(r)∑

ri,rj∈R
i6=j

|Cov(ri) ∩ Cov(rj)|+ 1 (4)
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where R represents a set of rules being optimized, r ∈ R represents a single rule, and
Cov(ri) denotes the set of examples covered by ri. In Hedwig, a set of rules (a beam
of size b) is iteratively refined during the learning phase using a selected refinement
heuristic, such as for example lift or weighted relative accuracy.

The term
∑

r∈R ε(r) corresponds to the quality of individual rules. Simultane-
ously, the rules shall not overlap, which is achieved by introduction of the following
term:

∑
ri,rj∈R
i 6=j

|Cov(ri)∩Cov(rj)|+ 1. Here, Hedwig aims to minimize the intersec-

tion of instances, covered by rules ri and rj .
Essentially, we want to maximize rule quality of the set of rules (the numerator),

while at the same time having the rules cover different parts of the example space
(minimize the denominator).

The beam search-based algorithm used in this work hence yields multiple different
rules that represent different subgroups of the data set being learned on.

3.1.2 Network partition preliminaries

Let G represent a complex network, i.e. a graph with non-trivial topological proper-
ties. The set of network’s nodes is denoted as N . In this work we address the issue
of learning from n different partitions of G. A partition is a subnetwork, which can
for example represent a functional community, a component or a convex subgraph
[43].

Definition 2 (Trivial network partition) If a network is partitioned into a single
partition set P , we term this partition a trivial partition, i.e., |P | = 1;∀p ∈ P1|p ∈ N .
On the contrary, if |P | > 1, the partition is non-trivial.

In this work we focus on non-trivial network partitions, where partitions can be
overlapping, as defined below.

Definition 3 (Overlapping network partition) An overlapping network parti-
tion consists of at least two partitions Px ∈ P and Py ∈ P , which include the same
node:

∃n ∈ N |(n ∈ Px) ∧ (n ∈ Py); (Px 6= Py).

3.2 Explaining the problem setting

This section formally presents the problem of learning from network partitions as a
rule learning problem.

3.2.1 Representing network partitions as classes in a rule learning setting

To understand the connection between network’s partitions P and a representation,
useful for different down-stream machine learning approaches, e.g., for rule learning
or subgroup discovery, we need to establish a relationship between the partitions P
and the corresponding classes T .

A non-overlapping network partition can be described as a surjective mapping
between the nodes and their corresponding partitions, whereas overlapping partitions
are described as one-to-many mappings.
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Proposition 1 The upper bound for the number of classes, needed to represent an
overlapping partition P is

|T | = |P |.

Proof Let the s : N → P denote a mapping between the set of nodes N and the
set of partitions P . The cardinality of the set of all mappings |

⋃i=|N |
i=1 s(ni)| is thus

equal to |P |. ut

This observation is useful for studying a more general case, where all possible
partitions are accounted for. To prove a general case for overlapping partitions, a
relation between a node and its corresponding partitions needs to be defined. The
number of all non-empty partitions of a set is known as the Bell number [25].

Definition 4 (Bell number) Let Bi denote the i-th Bell number and B0 = 1. The
k-th Bell number is then defined via recurrent relation:

Bk+1 =
k∑
i=0

(
k

i

)
Bi. (5)

Proposition 2 A network with n = |N | nodes can be partitioned into Bn−1 unique
non-trivial partitions, where n denotes the n-th Bell number.

Proof Each network with n nodes can be partitioned into 1 + nt partitions, con-
sisting of 1 trivial partition and nt non-trivial partitions. Consequently, the num-
ber of non-trivial partitions nt for networks with more than a single node equals∑i=n−1

i=0
(
n−1
i

)
Bi − 1 = Bn − 1. ut

Corollary 1 Take a network with n nodes. Having defined the maximum number
of possible partitions |P |, and given Proposition 1, it immediately follows that the
maximum number of classes |T | assigned to a node corresponds to the number of all
non-trivial partitions that it is part of, which equals |T | = Bn − 1. A node can be
present in all possible partitions simultaneously, as long as they differ by at least one
node.

Example 1 Consider a network consisting of two nodes {a, b}. There are two possible
partitions of this network, as B2 =

∑i=2−1
i=0

(2−1
i

)
Bi = 1 + 1 = 2. The two partitions

are: {{a}, {b}}, and {{a, b}}. The latter is a trivial partition and as such it is not
relevant for various downstream learning tasks such as rule learning. According to
Proposition 2, there remains a single relevant partition of nodes {a, b} into two sets:
{a} and {b}.

Finally, we prove that considering all relevant partitions takes exponential time.

Proposition 3 Considering all non-trivial partitions of a network with n nodes is
exponential in terms of n.

Proof As Bn is clearly a strictly increasing function of n, we can assume without
loss of generality that n is even. Let Bn − 1 denote the set of non-trivial partitions.
It follows that:

Bn+1 − 1 ≥ Bn + nBn−1 − 1 ≥ nBn−1 − 1

≥ n(n− 2)(n− 4) · · · 2− 1 = 2 n
2 ·
(n

2

)
!− 1
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ut

Corollary 2 Overlapping network partitions are at least exponential in terms of
n, as there are at least as many possible overlapping partitions, as there are non-
overlapping partitions.

Consequently, for a network with n nodes, a näıve approach for learning from
its partitions would need to consider Bn − 1 possible classes, which would result
in at least exponential time complexity in terms of n. For example, exhaustive rule
learning for a network with |N | = 20 would need to consider the following number
of possible classes: B20 − 1 = 5, 832, 742, 205, 056.

In the following sections, we propose a computationally feasible approach that
considers as classes only the relevant partitions derived from a network’s topology.

4 Proposed CBSSD methodology

This section presents the proposed approach to semantic subgroup discovery from
complex networks, named CBSSD (Community-Based Semantic Subgroup Discov-
ery). The proposed implementation focuses mostly on learning from the lists of nodes
associated with the studied phenomenon, yet can be also applied to learn from com-
plex networks directly. An overview of the CBSSD methodology is illustrated in
Figure 1.

4.1 Steps of the CBSSD methodology

The methodology consists of four main steps, described in this section: network
construction, network partitioning via community detection or other methods, ap-
propriate background knowledge representation, and semantic subgroup discovery.

Step 1: Constructing a network of associations

The first step of the CBSSD methodology takes as input a list of input data instances,
along with any complex network to which the input list of instances can be mapped.
In the first step of the methodology, we automatically induce a network based on the
input list. As an alternative first step of the CBSSD methodology, existing networks
(such as for example the human proteome network) can be used instead of automat-
ically induced networks. Both options are demonstrated and tested in Section 5.

To automatically induce a network from an input list of biological entities (such
as proteins or genes), we levarage the Biomine methodology [23] for network con-
struction; individual terms are used as seeds for crawling the BioMine knowledge
graph, which includes millions of term associations across main biological databases,
such as UniProt [15], Kegg [35], and GenBank [7].

To construct the graph from BioMine, we introduced a network generator func-
tion Γ , which takes as input a node of interest and yields a graph corresponding
to the node’s neighborhood in the BioMine. The final knowledge graph Gf is con-
structed incrementally, by querying one term at a time. This results in a set of
graphs {Γ (v1), . . . , Γ (vn)}, where {v1, . . . , vn} are the input query terms. Setting
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Fig. 1 Schematic representation of the proposed CBSSD procedure. Complex graph’s com-
munities are used to identify possible subgroups corresponding to the input node list. The
subgroups are further explained using semantic subgroup discovery with background knowl-
edge. The Ai terms in the rules denote different semantic terms, corresponding to individual
communities (colored circles).

Γ (vi) = (Vi, Ei) for each i (where Vi is the set of nodes of the graph Gi and Ei is
a set of edges), we construct a single final graph from the graphs by merging the
nodes and edges, i.e. we construct the graph Gf = (Vf , Ef ) by setting Vf =

⋃n
i=1 Vi

and Ef =
⋃n
i=1 Ei.

Step 2: Partitioning a complex network

In the second step of the CBSSD methodology, the network constructed in the first
step is partitioned. As shown in Section 3, there exist Bn − 1 relevant network
partitions for non-overlapping partitions, and even more when partitions overlap. As
exhaustive partition analysis is not computationally feasible due to exponential time
complexity, we leverage two different community detection algorithms.

The first community detection algorithm we use in this step is the Louvain algo-
rithm which is useful for large networks. The Louvain algorithm used is not capable
of multiplex community detection, which is of relevance, as interaction coupling be-
tween protein-protein and gene-gene interaction layers can be considered. For this
task, we leverage the second community detection algorithm, the multiplex variation
of the InfoMap algorithm (described in Appendix A). For completeness, our ap-
proach also includes a variant of the InfoMap algorithm which detects communities
in homogeneous networks, i.e. networks consisting of single node types. The commu-
nity detection algorithm to be used is application specific, yet our initial experiments
show that for larger homogeneous networks, the Louvain algorithm performs faster.
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Fig. 2 An example community partition. Different colors correspond to different communities.
The network represents communities detected on a BioMine network used in our previous study
[53]. It can be observed, that multiple communities emerge, which were shown to correspond
to different functional processes.

We tested this claim on the IntAct network, described in detail in Section 5.1. This
step is considered multi-view learning, as heterogeneous networks consisting of multi-
ple layers of different types of information are used to partition input instances. More
specifically, the community detection on heterogeneous networks can be viewed as
multi-view clustering, which aims to obtain a partition of the data in multiple views
that often provide complementary information to each other [63].

Apart from community-based partitioning, we also consider network components,
i.e. connected subnetworks present in real world complex networks [54]. Similarly
to community detection, the result of component-based partitioning is a set of a
network’s components further used for learning.

For this step, the constructed knowledge graph can be interpreted either as an
undirected graph (in biological context this makes sense as long as we are interested
only in associations), or as a heterogeneous network. In our experiments, we used
codes for relation to associate individual proteins from the protein-protein interac-
tion layer with genes from the gene-gene network. The community detection proce-
dure returns sets of nodes {C1, C2, . . . Cn} that represent individual communities.
Each node in the network belongs to exactly one community (i.e. the communities
are non-overlapping). An example community partition is depicted in Figure 21.

Step 3: Background knowledge representation

The goal of the CBSSD algorithm is to discover semantic descriptions of identified
communities. To this end, each community Ci (discovered in Step 2 of the CBSSD al-
gorithm) becomes a class label Ti—the nodes from the input list are labelled with the

1 Visualization was plotted with the Py3Plex library (https://github.com/SkBlaz/
Py3Plex)
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Fig. 3 Example GO hierarchy related to RNA binding factors. Connections between terms
are directed.

community they belong to. In this way, input nodes are grouped into distinct classes,
yet no additional nodes present in the detected communities are added as instances,
as they could introduce unnecessary noise in the semantic subgroup discovery step.

Semantic rule learning requires the data to be encoded in the form of RDF triplets
T (S, P,O), where S is the subject, P the predicate and O the object. The experi-
mental data from the previous step was converted into RDF triplets as required by
Hedwig, the algorithm used in the rule discovery process [59]. Hedwig is capable of
leveraging the background knowledge in the form of ontologies to guide the rule con-
struction process. It does so by using the hierarchical relations between the ontology
terms. Rules are initially constructed using more general terms and further refined
using more specific terms. Our main source of background knowledge in this study
is the Gene Ontology (GO) [3] database, one of the largest semantic resources for
biology. It includes tens of thousands of terms, which together form a directed acyclic
graph, directly usable by semantic subgroup discovery tools. An example hierarchy
taken from the GO is displayed in Figure 3.

For Hedwig to perform rule construction, two conditions must be met. First,
individual node names from the community detection step need to have the corre-
sponding GO term mappings, and second, the whole gene ontology must be provided
as a source of background knowledge. This requires that the nodes, corresponding
to the discovered communities are encoded in the form of semantic triplets. Such
encoding is achieved by treating each observed community as an individual target
class, where all of its nodes are considered instances of this class. The key aspect of
the rule generation procedure is the definition of the predicate, which will be used
for finding suitable rule conjunctions.

To summarize, the output of this step is a list of nodes from the complex network.
The nodes are (1) labelled by classes that correspond to the communities they belong
to and (2) annotated with corresponding GO terms, which enable semantic rule
induction described in the next step.
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Step 4: Semantic rule induction

The result of this step (and the final result) of the CBSSD methodology are then
rules of the form TargetClass ← Explanation, where TargetClass corresponds to
one of the partitions, discovered in step 2, and Explanation is a conjunct of one
or more terms from the background knowledge, prepared in step 3. The subgroup
discovery is carried out by the Hedwig algorithm. Individual rules are learned by
maximization of the criterion, introduced in section 3 (Equation 4). By convention,
we use the subClassOf predicate when constructing the background knowledge base.
Further, is a predicate is used to map individual nodes to their semantic term anno-
tations. Individual rules’ p-values are determined by the Fisher’s exact test (FET),
a non-parametric, contingency table-based procedure, where a difference in coverage
between two rules is leveraged to select the better one. We refer the interested reader
to [59, 60] for a comprehensive treatment of the statistical rule evaluation, as used
by the Hedwig algorithm.

4.2 Final formulation of the CBSSD approach

The CBSSD approach can be formalized as Algorithm 1. First, individual input
terms are used to construct the heterogeneous network related to the studied phe-
nomenon. Partitions are identified (PartitionDetection step) and the input term list
is partitioned according to the presence of individual terms within specific partitions
(PartitionFunction). Finally, background knowledge in the form of ontologies is
used to discover meaningful rules of individual partitions (runHedwig).

In Algorithm 1, I represents the input node list, O the ontology used in the
semantic learning process, Γ a graph generator, and S represents the knowledge
graph, which is incrementally constructed from the input list. The stopping criterion
for evaluating individual sets of rules can be any rule significance heuristics, such as,
for example, the chi-squared metric, entropy-based measures or similar [45].

Input: nodes of interest I annotated by ontologies (Ξ),
network generator (Γ )
Output: Rule sets
V,E := ∅ ; . Network construction (optional)
foreach node v ∈ I do

V := Γ (v)nodes ∪ V ;
E := Γ (v)edges ∪ E;

end
S := (V,E) ;
C1...n := PartitionDetection(S); . Partition detection
P1...n := PartitionFunction(I, C1...n) ; . Partition representation
RuleSets := runHedwig(P1...n, Ξ) ; . Rule induction
return RuleSets

Algorithm 1: Pseudocode of the CBSSD approach.

There are two computationally expensive steps in the current implementation of
the CBSSD approach, the community detection and the semantic subgroup discovery.
The community detection algorithms used [49, 9] were previously proven to scale well
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to millions of nodes and edges. The subgroup discovery part performed by Hedwig
uses an efficient beam search, where only a set of rules is propagated through search
space and continuously upgraded. A parallel beam search could potentially speed
up the rule discovery, yet we leave the development of such algorithm for further
work. Note that Hedwig already [1, 59] uses efficient parallelism with bitsets for
determining the coverage of conjuncts of rules.

Individual parts of the CBSSD framework are parameterized as follows.

– Parameters of network construction (step one
– Node batch size, denoting the number of nodes used to query the BioMine

network
– Types of nodes and edges kept in the final network

– Parameters of partition detection (step two)
– Partition detection algorithm with corresponding parameters, e.g., number

of iterations, type of community detection etc.
– Parameters of background knowledge representation step three

– Generalization predicate used
– Parameters of rule induction (step four)

– Search heuristic used (e.g., lift, gain, WRAcc etc.)
– Beam size
– Depth (maximum number of conjunctions)

If not otherwise stated, we use the Hedwig’s default parameter settings. In the
next section, we discuss the quantitative evaluation of the proposed approach.

5 Learning from the proteome: A quantitative scale up study

In this section we present a quantitative experimental setting, where the properties
of the CBSSD algorithm are studied.

We begin the experimental evaluation of the proposed approach by investigating
how different combinations of background knowledge and different complex networks
used for term partitioning influence the explanatory capabilities of CBSSD. In this
section we quantitatively demonstrate that the proposed approach can discover sig-
nificant patterns, invisible to conventional enrichment approaches. The following
sections are as follows. First, we discuss the experimental setting used. Next, we
discuss evaluation measures, used to compare the two methods. Finally, we present
the experimental findings in form of critical distance diagrams.

5.1 Experimental setting

To perform the experiments, we first downloaded the current version of binary pro-
tein interaction-based proteome from the IntAct database [46], which at the time of
writing consists of more than 350,000 nodes and approximately 3.8 million edges. In
IntAct, the nodes represent individual proteins, and the (undirected) edges repre-
sent their interactions. The edges are weighted, where the edge weights correspond
to experimental reliability of the interactions between the corresponding proteins,
and take values between 0 and 1.
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A subset of the IntAct network is used to test the scalability of CBSSD, and
to assess the difference between the term enrichment and the proposed semantic
rule induction approaches. In this work we have filtered the network, keeping only
the edges with reliability > 0.2 and eliminating isolated nodes. The filtered IntAct
network—which is illustrated in Figure 4—consists of 100,000 nodes and 850,000
edges. Note that this is an order of magnitude larger than the automatically con-
structed BioMine knowledge graph, which consists of a union of input-specific sub-
networks (as discussed in Section 4).

As the CBSSD leverages background knowledge in the form of ontologies, we
additionally test the CBSSD’s performance when either the reduced GO (GO Slim)
[14] or the whole Gene Ontology is used [3]. The two ontologies contain biological
terms describing different biological functions, components and processes.

We compare the proposed methodology against the Fisher’s exact test-based
term enrichment, as used in DAVID [32] and similar tools for gene set enrichment.
Here, the Fisher’s exact test is used to determine the significance of a term. This test
is based on the hypergeometric distribution, where the p value is defined as follows:

p =
(
a+b
a

)(
c+d
c

)(
n
a+c
) = (a+ b)!(c+ d)!(a+ c)!(b+ d)!

a!b!c!d!n! (6)

where a represents the count of query genes within a pathway, b the number of
all known genes present in the pathway, c the number of genes not present in the

Fig. 4 Part of the human (IntAct) proteome (above the 0.2 reliability threshold) used in this
study. It can be observed that densely connected subnetworks emerge, thus the network could
contain potentially interesting communities and components.
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Table 1 Description of different term enrichment and semantic subgroup discovery approaches
compared, where “Terms” denote EASE-based single term enrichment (i.e. term enrichment
using EASE score defined in Equation 7), and “Rules” denote the CBSSD approach.

Algorithm Description
Rules(IntAct+GO) CBSSD with IntAct proteome and whole Gene Ontology
Rules(IntAct+GOslim) CBSSD with IntAct proteome and reduced Gene Ontology
Rules(BMN+GO) CBSSD with BioMine and whole Gene Ontology
Rules(BMN+GOslim) CBSSD with BioMine and reduced Gene Ontology
Terms(IntAct+GO) TE (EASE) with Intact proteome and whole Gene Ontology
Terms(IntAct+GOslim) TE (EASE) with IntAct proteome and whole Gene Ontology
Terms(BMN+GOslim) TE (EASE) with BioMine and reduced Gene Ontology
Terms(BMN+GO) TE (EASE) with BioMine and whole Gene Ontology

pathway, and d the number of all known genes not present in the pathway, and n =
a+ b+ c+ d. Additionally, DAVID uses a more conservative EASE score [30], where
a is replaced by a− 1. This leads to modifying Equation (6) as follows:

pEASE =
(
a−1+b
a−1

)(
c+d
c

)(
n

a−1+c
) = (a− 1 + b)!(c+ d)!(a− 1 + c)!(b+ d)!

(a− 1)!b!c!d!n! (7)

This correction provides more robust results for cases when only a handful of
genes are used as an input. We systematically investigate whether the selected genes
are associated with disease pathways as well as with basic metabolic processes. If
not stated otherwise, we consider terms or rules to be significant at significance
level < 0.05. As both approaches (CBSSD and EASE) evaluate many terms, we
correct the p-values obtained during learning by the Benjamini-Hochberg multiple
test correction [6].

Different term enrichment and semantic subgroup discovery settings used in the
experiments are summarized in Table 1. The CBSSD’s running times can differ signif-
icantly, therefore we parameterize the beam size—one of the parameters determining
the CBSSD’s runtime—as follows. We run the parallel implementation of the term
enrichment for each data set and measure the running times. We adapt the CBSSD’s
beam size so that execution takes approximately the same amount of time for each
data set. The final beam size requiring a similar amount of time to EASE-based
enrichment averaged over all input lists was 300. On the BioMine network, we used
the InfoMap algorithm for community detection as it can leverage the heterogeneous
structure of the network. On the much larger IntAct network, we used the Louvain
algorithm for its performance.

Apart from the community detection algorithms, we additionally explored learn-
ing from component-based partitions.

5.2 Evaluation measures

We describe six different quantitative measures ε used in evaluating each of the afore-
mentioned approaches. The measures are divided into two main groups; Weighted
relative accuracy (WRAcc)-based measures and Information content (IC)-based mea-
sures. First, we investigate how different approaches behave when measured with the
weighted relative accuracy (WRAcc). For a given rule ri ∈ R for class C, WRAcc of
the rule is calculated as follows. Given the number of examples N , the number NC
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of examples of a given class C (i.e. the number of positive examples), the number of
all covered examples Cov(ri) by rule ri, the number of correctly classified positive
examples TP (ri) (true positives), the WRAcc for class C is defined as follows:

WRAcc(ri) = Cov(ri)
N

(
TP (ri)
Cov(ri)

− NC
N

)
. (8)

The WRAcc defined for a rule represents the rule’s accuracy for explaining the target
class, weighted by the number of instances belonging to that class. The higher the
WRAcc, the better a rule explains the target class under consideration. We compute
three variations of WRAcc for each approach:

1. Maximum WRAcc—the maximum WRAcc score of any rule in the whole rule
set.

2. Average (mean) WRAcc—the mean WRAcc score of WRAcc scores of all rules
in the rule set.

3. Minimum (worst case) WRAcc—the minimum WRAcc score of any rule in the
whole rule set.

The three metrics indicate different properties of the tested approaches. Minimum
and maximum WRAcc represent the worst and best rule learned by an approach.
The mean WRAcc represents an average performance. Individual terms, which are
the main result of EASE-based term enrichment, are considered as single term rules
for WRAcc calculation. We consider such representation relevant, as single term
results are commonly interpreted one by one, should no additional software be used
for term summarization.

Next, we compute the information content of individual rules. Information con-
tent for a single term rule (standard term enrichment) is defined as:

ICterm = − log(p(term)). (9)

This definition can be extended to rules ri where the condition is a conjunct
of several terms, i.e. term1 ∧ term2 ∧ · · · ∧ termk. In this case, assuming that the
probability of one term annotating a gene is independent of another term annotating
the gene, and

ICri = − log(p(term1 ∧ term2 ∧ · · · ∧ termk)) =
k∑
i=1

− log(p(termi)). (10)

This strong assumption is partially due to Hedwig’s capability to generalize sim-
ilar (dependent) terms, and thus reduce term dependencies. Similarly to the WRAcc
measure, we compute three variations of the information score:

4. Maximum IC (best case) —the maximum IC score of any rule in the whole rule
set.

5. Average (mean) IC—the average IC score of rules in the rule set.
6. Minimum IC (worst case) —the minimum IC score of any rule in the whole rule

set.
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Table 2 Gene lists used for the evaluation of gene enrichment and subgroup discovery ap-
proaches.

Name Short description No. UniProt IDs
Protein

secretion Genes involved in protein secretion pathway. 686

Unfolded protein
response

Genes up-regulated during unfolded
protein response, a cellular stress response

related to the endoplasmic reticulum.
116

Coagulation Genes encoding components of blood
coagulation system; also up-regulated in platelets. 141

DNA
repair Genes involved in DNA repair. 158

Epigenetics TF All known epigenetic transcription
factors related to cancer. 153

Fatty
acids

Genes encoding proteins involved
in metabolism of fatty acids. 159

Hypoxia Genes up-regulated in response
to low oxygen levels (hypoxia). 205

SNP-BS Genes, containing SNPs within protein binding sites. 466
Diabetes A gene list containing diabetes-related genes. 513
miRNA A gene list containing miRNA targets. 1296

To statistically evaluate the difference between results, we first computed the
significance scores using the Friedman’s test, followed by the Nemenyi post-hoc cor-
rection. The results are presented according to the classifier’s average ranks along a
horizontal line [17]. The obtained critical distance diagrams are interpreted as fol-
lows. If one or more classifiers are connected with a bold line, one can conclude that
their performance is approximately the same with a 5% risk (no significant difference
was detected). The classifiers are ranked for each data set separately; we assume that
the data sets are independent.

5.3 Experimental data

We used ten different data sets, using previously analyzed gene and protein lists
as input queries. All lists apart from SNP-BS and Diabetes were obtained from
the download section of the GSEA project2 [56]. The SNP-BS list represents the
results of a recent study, where sequence variants were studied in the context of
protein binding sites [62]. The Diabetes protein list represents a UniProt query with
keyword diabetes. Entries from the UniProt [15] database, the largest database of
proteins sequences, correspond to individual proteins. The lists are summarized in
Table 2.

The lists used correspond to genes, present in different biological processes, both
in terms of underlying network organization, as well as functional annotation. All
gene accessions were converted to the corresponding UniProt identifiers for easier
evaluation.

2 http://software.broadinstitute.org/gsea/msigdb/collections.jsp
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5.4 Experimental results

In this section we present the experimental findings. We first discuss the community-
based partitioning, followed by the component-based one.

5.4.1 CBSSD with community detection: WRAcc results

We evaluate the performance based on three WRAcc measures introduced in Sec-
tion 5.2, as well as the computational costs associated with different approaches. We
begin by investigating the rule WRAcc. The critical distance diagram showing re-
sults for all approaches and statistical significance of them being different is depicted
in Figure 5.

It can be observed that the maximum WRAcc scores mostly correspond to rule-
based approaches. Here, the best performing approach leverages smaller BioMine
network along with GO Slim—reduced ontology. The BioMine network appears to
have had a noticeable effect on performance, as it serves as the background network
for the top three approaches. The top approach (BMN+GOslim) noticeably outper-
forms the two Term enrichment approaches, based on the IntAct network. Similarly,
the best term enrichment approach (BMN+GOslim) significantly outperforms the
two term enrichment approaches, based on the IntAct network.

Fig. 5 WRAcc results for enrichment based on communities.
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A very similar classifier rankings can be observed for all three CD diagrams. The
CBSSD approach also results in a rule with the worst WRAcc measure (Figure 5,
second diagram).

The average WRAcc ranks are similar to the maximum WRAcc results. Com-
pared to maximum WRAcc and mean WRAcc, different approaches differ the most
when minimum WRAcc is considered. Although the ranks of individual algorithms
are the same, the Rules (BMN + GOslim) approach outperform all term-based ap-
proaches but Terms (BMN+GOslim). All three diagrams indicate, BioMine (BMN)-
based community partitioning yields rules with high WRAcc when reduced ontology
(GOslim) is considered.

5.4.2 CBSSD with community detection: IC results

We continue the performance investigation when information content is considered.
As the final result we obtained 3 different critical distance diagrams, corresponding
to information content, shown in Figure 6.

Maximum information content corresponds to CBSSD’s results (Rules), although
there is no significant difference between the best CBSSD result and the best term
enrichment (Terms (IntAct+GOslim)), which here leverages the IntAct network as
the source for obtaining the network’s partitions. The minimum IC results suggest

Fig. 6 IC results for enrichment based on communities.
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Fig. 7 Coverage results for enrichment based on communities.

some form of uniform distribution in terms of worst IC. A similar classifier ranking
is observed when mean IC is considered. Interestingly, the best approach remains
the one which leverages reduced GOslim ontology.

5.4.3 Coverage results for enrichment based on communities

We additionally report the rankings of the compared approaches with respect to
rule coverage. As shown in Figure 7, in terms of coverage, term-based enrichment
generally outperforms CBSSD variations. This is not surprising, since term-based
enrichment corresponds to rules with only one term and has therefore larger cover-
age. Detailed overview of quantitative results is presented in Section 7. We continue
the discussion with the results, obtained using component-based network partition
function.

5.4.4 CBSSD with component partitioning: WRAcc results

The results presented in this section are structured similarly to the previous section.
First, we present the WRAcc-related results, followed by the IC-based results, and
conclude with an examination of the overall coverage.

The critical distance diagrams representing WRAcc-based comparisons are pre-
sented in Figure 8.

We observe a similar algorithm distribution compared to community-based parti-
tioning in terms of absolute ranks. The best maximum WRAcc scores were obtained
by rules and terms, based on the BioMine induced network. Similar rankings are
obtained when mean WRAcc is considered. In both diagrams, the combination of a
rule learner, BioMine network and the reduced ontology significantly outperform the
IntAct-based approaches (Rules (BMN + GOslim dominates). A similar ranking of
algorithms is obtained when the best minimum WRAcc is considered, i.e. the rule-
based approaches are among the top three. We discuss the results obtained in this
section in more detail in Section 7.

5.4.5 CBSSD with component partitioning: IC results

Similarly to the community-based partitioning, we further investigate the informa-
tion content (IC) of individual approaches when component-based partitioning is
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Fig. 8 WRAcc results for enrichment based on components.

considered (Figure 9). The maximum IC results similarly to the WRAcc based mea-
surement yield the rule-learning, augmented with the BioMine network and GO Slim
ontology as the best approach (Rules (BMN + GOslim)).

Interestingly, the use of IntAct network in terms of IC for all three score variations
(min, max, mean) yielded better results, compared to WRAcc in previous section.
Three out of four best performing approaches in terms of mean IC leverage GO Slim
as the background knowledge database, which indicates reduced ontologies have high
potential for explanatory tasks.

5.4.6 CBSSD with component partitioning: Coverage results

Similarly to community-based network partition, term enrichment outperformes rule
learning coverage-wise (Figure 10). This result indicates the network partition does
not influence the algorithm’s performance in terms of coverage. The difference in
coverage is possibly due to different types of rules compared (exclusively single term
rules—EASE-based enrichment vs. multi conjunct rules).

A possible explanation for the observed result is that finding interesting higher
order rules is a challenging task, and compared to terms, fewer rules are identified. We
further observe that using GO Slim (reduced ontology) as the background knowledge,
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Fig. 9 IC results for enrichment based on components.

Fig. 10 Coverage results for enrichment based on components.

rules which cover larger portion of the input set emerged. This result is expected, as
GO Slim consists of less, more general terms compared to whole GO.

5.4.7 Results summary

The presented quantitative results indicate the dominance of term-based approaches
in terms of coverage. Using community based partition on networks with differ-
ent types of nodes has proven beneficial both in terms of WRAcc and information
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content. We conclude that using multiple different types of nodes—multiple views—
increases the partition qualities and results in better rules.

6 Using CBSSD in two knowledge discovery tasks

This section demonstrates the use of the proposed methodology on two real world
data sets from the life science domain. First, we consider the properties of amino-acid
variants within protein binding sites, followed by cancer related transcription factors
identified in the context of epigenetics.

6.1 Discovery of properties of proteins with single amino-acid variants present in
the binding sites

Sequence variants are nucleotide or amino acid substitutions that can lead to un-
stable protein interaction complexes and thus influence the organism’s phenotype
(e.g., induce a disease state). There are two main types of variants: polymorphisms
or germ-line variants that are heritable, and somatic mutations that appear in so-
matic tissues without previous genetic encoding. Although it was demonstrated that
variants within biological interactions can be associated with disease occurrence
[8, 62, 52, 34], currently there are no studies of this phenomenon aimed at dis-
covering new subgroups of proteins associated with variants within interaction sites
at a more general level.

We use the results from a previous enrichment analysis study [8] for comparison
with the proposed CBSSD methodology. Enrichment analysis in the context of this
study is concerned with the identification of single significant terms, associated with
the studied phenomenon. The results are compared based on the terms appearing
in both approaches, i.e. terms found as a result of enrichment analysis as well as
as a result of semantic subgroup discovery. As the two compared approaches are
fundamentally different, the intersection of both results is expected to be only a few
highly significant terms).

More than 300 UniProt terms for which variants were found within protein bind-
ing sites were used as the input query list (found in supplementary material of [8]).
A BioMine knowledge graph with more than 1,650 nodes and 2,300 edges was con-
structed. The resulting network is shown in Figure 11.3

Triplet construction consists of first mapping the nodes from the knowledge graph
to the associated ontology terms, followed by the construction of the background
knowledge. In this application, the Gene ontology [3] was used in both steps. Se-
mantic subgroup discovery was conducted for more than 20 communities, and as
the main result more than 100 rules of various lengths were obtained. The most sig-
nificant and longest rules were manually inspected to identify possible overlap with
previous pathway enrichment studies done on the same input data set. Different
beam sizes were experimented with in the procedure (from 10 to 50).

The obtained rule sets for the identified communities were further inspected. We
directly compared the ontology terms present in the rules with the terms identified
as significant in our previous study [8]. For this näıve comparison, conjuncts were

3 Plotted with the Py3Plex library (https://github.com/SkBlaz/Py3Plex).
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Fig. 11 The BioMine network associated with polymorphisms located within protein inter-
action sites.

considered as individual entries, as we were only interested in term presence (not
coverage). There were 13 gene ontology terms present in both approaches (Table 3).

Although only 13 terms were found with both procedures, the identified terms
were among the most significant ones detected in the enrichment analysis setting.
This indicates, that both procedures identified a strong signal related to DNA and
cell cycle related processes. As semantic subgroup discovery was conducted for sepa-
rate communities, the results were expected to be more detailed and comprehensive.
This was indeed the case: given that many CBSSD rules consist of two conjuncts,

Table 3 Gene ontology terms, found both in enrichment and semantic rule learning process.
Terms marked with * emerged as the most relevant to semantic subgroup discovery.

Gene ontology term Meaning
GO:0000077 DNA damage checkpoint*
GO:0000086 Mitotic cell cycle*
GO:0003677 DNA binding*
GO:0004871 Signal transducer activity*
GO:0005730 Nucleolus*
GO:0005814 Centriole
GO:0016020 membrane
GO:0016605 PML body
GO:0030018 Z-disc
GO:0035264 Multicellular organism growth
GO:0045892 Negative regulation of transcription (DNA)
GO:0000122 Negative regulation of transcription (RNA)
GO:0000785 Chromatin
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these rules are potentially more informative than the ones identified by ontology en-
richment analysis. As iron binding proteins were present in the protein list (this was
known from the previous study [8]), rule R = GO:0034618 ∧ GO:0006874 appeared
as one of the most significant rules (p < 0.1). Ontology terms in this rule repre-
sent arginine binding and cellular calcium homeostasis—both processes described by
terms annotating nodes from the input list representing a term combination not de-
tected with conventional enrichment analysis. The key UniProt term found for this
rule was P41180 (CASR), which represents the extracellular calcium-sensing receptor
[26]. As CASR is indeed critical for calcium homeostasis discovery (GO:0006874), it
confirms the validity of our CBSSD approach. The second term (GO:0034618), rep-
resenting arginine binding is not so directly associated with the CASR protein. To
further investigate the context within which GO:0034618 occurs, we queried the gene
ontology database directly for similar proteins, already associated with this term. The
majority of proteins annotated with this term correspond to acetylglutamate kinase,
an enzyme that participates in the metabolism of amino acids (e.g., urea cycle). A
possible interpretation of this association is that the CASR protein induces hormonal
response, which could effectively lead to increased amino-acid metabolism, providing
the molecular components necessary for establishment of homeostasis. This associa-
tion serves as a possible candidate for further experimental testing and demonstrates
the hypothesis generation capabilities of proposed approach.

Another interesting rule emerged from the first identified community, i.e. the
rule GO:0030903 ∧ GO:0000006 was found for UniProt entries Q96SN8 (CDK5
regulatory subunit-associated protein 2), O94986 (Centrosomal protein), Q9HC77
(Centromere protein J) and O43303 (Centriolar coiled-coil protein). It can be ob-
served that all the identified proteins are connected with nucleus-related processes.
Term GO:0030903 corresponds to notochord development, which is a stage in cell
division—a term directly associated with the identified proteins. The second term,
GO:0000006, corresponds to high-affinity zinc uptake transmembrane transporter
activity, a process related to enzyme system responsible for cell division and prolif-
eration. Although this rule does not imply any new hypothesis, it demonstrates the
generalization capability of the proposed approach.

Many terms are specific to either semantic rule discovery based on community
detection or enrichment analysis. This discrepancy appears due to the fact that com-
munity detection splits the input term list into smaller lists, which can be described
by completely different terms than the list as a whole. As the proposed methodology
splits the input list, it is not sensible to compare it with conventional approaches,
which operate on whole lists. Both approaches cover approximately the same percent-
age of input terms. The CBSSD’s coverage is 12.02% with 218 GO terms, whereas
the term coverage for conventional enrichment is 12.3% with 881 GO terms. The
term discrepancy serves only as a proof of fundamental difference between the two
approaches. Nevertheless, we demonstrate that our approach is a useful complemen-
tary methodology to the well established enrichment analysis.

6.2 Grouping of cancer-related epigenetic factors

Epigenetics is a field where processes such as methylation are studied in the context
of the influence of environment on the phenotype. Epigenetic factors are actively
researched and are constantly updated in databases such as emDB [44], where in-
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formation such as gene expression, tissue information and variant information is
publicly accessible. We tested the developed approach on the list of many currently
known epigenetic factors related to cancer. The epigenetics data set was chosen for
two main reasons: first, to demonstrate the CBSSD’s performance on a data set, to
our knowledge not yet used in semantic subgroup discovery, and second, this data set
serves to further test the developed methodology in the context of different biological
process. The 153 distinct UniProt terms were used as input for the BioMine knowl-
edge graph construction. The final graph consisted of approximately 4,500 nodes and
5,500 edges, respectively. The obtained knowledge graph is significantly larger than
the one used in the previous case study (properties of SNVs in binding sites) and
thus demonstrates the capabilities of the developed approach on larger graphs.

Using InfoMap, more than 50 communities were identified. These communi-
ties were further inspected. For the community including UniProt term Q8WTS6
(Histone-lysine N-methyltransferase), many interesting rules were detected by the
CBSSD approach. For example, rule GO:1990785 ∧ GO:0000975 ∧ GO:0000082
(with p = 0.09) indicates that the protein is indeed highly associated with epige-
netic processes. Term GO:1990785 describes water-immersion restraint stress, term
GO:0000975 regulatory region DNA binding and term GO:0000082 transition of mi-
totic cell cycle. All three terms describe the Q8WTS6 entry, as it effects the DNA’s
topological properties (coil formation) and is responsible for transcriptional activa-
tion of genes, which code for collagenases, enzymes crucial to mitotic cell cycle (wall
formation).

To further analyze CBSSD’s generalization capabilities, we plotted all the rules
(discovered by CBSSD) for the individual communities (identified by InfoMap) against
all the GO terms identified as enriched by the DAVID Bioinformatics Suite [32]. As
this experiment is conducted using only the terms, previously identified as significant
by DAVID, CBSSD’s significance threshold was relaxed to p = 0.5. This relaxation
was introduced to enable the discovery of more interesting patterns, which would
otherwise be considered noise or false positive results.

The semantic landscape obtained in this experiment is depicted in Figure 12.
For an expert defined list of genes coding for cancer-related epigenetic regulators,
the rows of the visualized matrix correspond to enriched GO terms discovered by
DAVID, while the columns represent the terms present in rules discovered by the
CBSSD approach. In particular, each column represents a community detected by
the InfoMap algorithm, while the matrix cells of the given column represent all the
terms appearing in any of the rules describing the given community. The number of
columns equals the number of communities detected by InfoMap. The red rectangles
represent the terms present in any of the rules composed of a conjunction of at
least GO terms. The green rectangles correspond to terms identified by DAVID and
appearing in simple (single term) CBSSD rules. Rows, located in the uppermost part
of the matrix represent the most general GO terms.

It can be observed (see the enlarged inset image in Figure 12) that only a couple
of previously identified GO terms correspond to multi-term CBSSD rules (red rect-
angles), where by multi-term rules we denote rules consisting of conjuncts of several
GO terms. Terms, such as GO:0000118 represent very high level terms, associated
with majority of epigenetics-related processes. Such terms are most commonly in-
cluded in more complex rules, consisting of conjuncts of several GO terms. Only
a handful of GO terms serve as a basis for more complex rules (this is observed
by seeing only a few lines in the matrix containing red rectangles). For example,
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Fig. 12 Visualizing the GO terms appearing in CBSSD discovered rules compared to the GO
terms discovered by the DAVID Bioinformatics Suite on an expert defined list of genes coding
for cancer-related epigenetic regulators.

one of these terms is GO:0000118, which represents the Hystone deacetylase com-
plex, one of the key mechanisms for hystone structure regulation. Other terms in-
volved in multi-term rules include GO:0000112, representing negative regulation of
transcription from RNA polymerase II promoter, a mechanism by which many epige-
netic regulators influence the transcription patterns, GO:0000183, representing chro-
matin silencing at rDNA, GO:0000785 and GO:0000790, representing chromatin in
general, GO:0000976, representing transcription regulatory region sequence-specific
DNA binding and GO:0001046, which represents core promoter sequence-specific
DNA binding. The described terms are all fundamentally associated with epigenetic
regulation, which proves that CBSSD is able to use the more general terms to con-
struct meaningful rules.

Overall, 27% of all significant terms identified via conventional enrichment anal-
ysis by DAVID were also found with the CBSSD algorithm. Such low percentage is
expected, as CBSSD builds upon individual subsets of the larger set of terms found
in conventional enrichment analysis. This result implies that higher level terms are
similar in both approaches, yet CBSSD identified latent patterns, which can not be
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detected via conventional enrichment analysis. The higher level terms appear to form
the base for more complex rules. Similar behavior was reported as a result of the
SegMine methodology [48], which similarly to CBSSD, yields explanatory power of
rules in order to find enriched parts of input term lists.

Coverage-wise, both conventional enrichment, as well as CBSSD perform the
same, as the CBSSD’s coverage is 96.7% with 230 GO terms, whereas the term
coverage for conventional enrichment is 96.7% with 360 GO terms. Similarly to the
case study one, CBSSD needed fewer GO terms to cover approximately the same
percentage of input term list.

7 Discussion and further work

The quantitative evaluation of different enrichment settings indicates that the rules
discovered by CBSSD can represent patterns, otherwise missed by conventional en-
richment analysis approaches. In terms of coverage, conventional enrichment ap-
proaches dominate. A possible explanation for such behaviour is that more significant
terms are identified (compared to rules), and shorter rules (1 term) imply more gen-
eral rules and larger coverage. Further, the probability of a random rule, composed
of multiple terms is smaller compared to single terms discovered by conventional
enrichment approaches. The larger the number of terms in a single rule, the smaller
the probability the rule will emerge as significant.

The results imply that rule learning through semantic subgroup discovery can be
used in parallel with term enrichment in order to maximize the number of interesting
patterns found.

With regard to WRAcc, we demonstrate that automatically induced BioMine
networks yield better rule sets compared to IntAct network. This result serves as an
additional confirmation that the community-based heterogeneous network partition-
ing yields better rules. Understanding the meaning of topological structures, which
emerge from large complex networks remains an open problem. We demonstrated
that larger networks (IntAct) can also be used as input for CBSSD.

The issue we did not address in this study is the process of obtaining the input
(i.e. the gene list) at the first place. We believe this step is entirely problem specific,
and can as such not be implemented in the existing CBSSD methodology. In the limit,
all known proteins can be used as the input. In such a scenario, the CBSSD approach
would yield enrichment of a network’s partitions in terms of all nodes. In this work we
do not focus on this task, yet current state-of-the-art high-throughput experimental
methods already yield large, species-specific interaction networks, which could benefit
from the generalized version of the CBSSD that would consider all the nodes. Recent
improvements in the sequencing technology offer extensive amounts of gene-gene
interaction networks coming from the field of metagenomics. We leave the case studies
related to this topics for further work.

We believe that approaches concerned with network analysis could benefit by
using CBSSD methodology. As it is currently not well understood for example,
how protein-ligand binding sites can be understood via structural similarity anal-
ysis [54, 50], multi-conjunct descriptions of topological features, which emerge in
such networks could offer novel insights.

Semantic data mining is an emerging field, where background knowledge in the
form of ontologies can be used to generalize the rules emerging from the learning
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process. In this study, we demonstrate how such an approach can be used to induce
rules describing the communities and components, detected on an automatically
constructed knowledge graph. Our implementation was tested on two data sets from
the life science domain, where the validity of the most significant rules was manually
inspected in terms of biological context. This approach works for up to 6,000 nodes
of interest in reasonable time (e.g., in a day), but for more (e.g., 10,000 nodes),
whole graphs should be used from the beginning, if possible. As the number of
rules produced can be large, adequate rule visualization techniques for elegant result
inspection are still to be developed.

The proposed CBSSD methodology is to our knowledge one of the first attempts,
where we address the issue of learning from complex networks by leveraging seman-
tic subgroup discovery. Further, the developed approach is scalable, and offers the
opportunity to investigate interaction between different semantic (GO) terms.

We currently see CBSSD as a complementary methodology to enrichment analy-
sis, as it is capable of describing latent patterns beyond the ones expected by domain
experts.

Further work regarding CBSSD includes incorporation of ontology, as well as net-
work reduction techniques to speed the rule discovery even more. Further, it remains
an open problem as to how the obtained results can be visualized. Finally, CBSSD
will be extended to other forms of symbolic learning, as for example association
rules similarly remain poorly investigated in the context of learning from complex
networks.

Availability

The Community-based subgroup discovery reference implementation is freely avail-
able at https://github.com/SkBlaz/CBSSD. It relies on primitives for ontology pro-
cessing, network construction and analysis available as part of https://github.com/
SkBlaz/Py3plex.

Acknowledgments
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48. Podpečan V, Lavrač N, Mozetič I, Novak PK, Trajkovski I, Langohr L, Kulovesi
K, Toivonen H, Petek M, Motaln H, et al (2011) Segmine workflows for semantic
microarray data analysis in orange4ws. BMC Bioinformatics 12(1):416

49. Rosvall M, Axelsson D, Bergstrom CT (2009) The map equation. The European
Physical Journal-Special Topics 178(1):13–23

50. Sardiu ME, Gilmore JM, Groppe B, Florens L, Washburn MP (2017) Identifica-
tion of topological network modules in perturbed protein interaction networks.
Scientific Reports 7:43845

51. Schipper HM, Maes OC, Chertkow HM, Wang E (2007) Microrna expression
in alzheimer blood mononuclear cells. Gene regulation and systems biology
1:GRSB–S361
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Appendix A Multiplex InfoMap algorithm

As Community-Based Semantic Subgroup Discovery operates on multilayer net-
works, i.e. networks consisting of multiple node types, we provide additional ex-
planation how the derived InfoMap algorithm is used for community detection in
multilayer networks, initially presented in [16]. Let M denote a partition of state
nodes i assigned to communities l = 1, 2, . . . ,m. Each node is a part of a layer
denoted here with Greek letters (e.g., α). For example, qαβij corresponds to the tran-
sition rate between the node i in α layer and node j in the β layer. The transition
rates with which a random walker enters (qlx) and exits (qly) a community can be
defined as

qlx =
∑

{i,α}∈J 6=V,{j,β}∈V

qαβij (11)

qly =
∑

{i,α}∈V,{j,β}∈J 6=V

qαβij (12)

where J and V denote two different layers and i, j denote two different nodes. The
codewords are based on physical node visits. For codebook l the physical node visits
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are denoted as
pi∈l =

∑
{i,α}∈l

pαi . (13)

The p◦ is defined as the sum of the exit rates, p◦ =
∑

l qly. The normalized
visit probability distribution is redefined as P l = {pi∈l/pl◦}. The Q distribution is
similarly redefined to Q = {qlx/qx}. The multilayer map equation can be defined
as follows:

L(M) = qlxHq +
m∑
i=1

pi�Hi (14)

Although community detection represents one of the most commonly used net-
work partition methods used in analysis of complex networks, the proposed approach
is by no means limited to learning from communities. Currently, the proposed im-
plementation also supports partition based on a network’s components—connected
sub-networks. Further, arbitrary network partition function can also be specified as
part of the input. In this work we mostly focus on community-based partitions, as
they have been proven to correspond to causal patterns in systems, ranging from
biological networks, transportation to social networks [47].

Appendix B The Hedwig algorithm

In this section we describe in detail the two main procedures used in the Hedwig
semantic rule induction algorithm [59, 60]. The Hedwig algorithm is capable of using
domain ontologies to formulate a generalized hypothesis. Its result are descriptive
rules that describe individual parts of the input data set. Initially, a RDF-based
hierarchy is used to construct the hierarchical relations between instances, further
used in the rule induction step. The two key procedures of the Hedwig semantic
subgroup discovery algorithm are presented in Algorithms 2 and 3, respectively.

Input : Input examples E, background knowledge B, target class value c,
beam size k, p-value threshold α

Output: Set of rules
rules← [default rule(E, c, B)]
while improvement(rules) do

; . Add specializations of each rule to the beam
for rule ∈ rules do

extend(rules, specialize(rule, B))
end
rules← best(rules, k) ; . Select the top k rules

end
rules← validate(rules, α) ; . Significance testing

return rules
Algorithm 2: Hedwig’s induce(E, B, c, k, α) procedure.
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Input : Rule to specialize rule, background knowledge B
Output: Set of specializations of rule
specializations← []
; . Predicates that can be specialized
eligible preds← eligible(predicates(rule))

for predicate ∈ eligible preds do
; . Specialize by traversing the subClassOf hierarchy
for subclass ∈ subclasses(predicate, B) do

new rule← swap(rule, predicate, subclass)
if can specialize(new rule) then

append(specializations, new rule)
end

end
; . Specialize by negating
new rule← negate(rule, predicate)
if can specialize(new rule) then

append(specializations, new rule)
end

end
if rule 6= default rule then

; . Specialize by adding a new unary predicate
new predicate← next non ancestor(eligible preds)
new rule← append(rule, new predicate)
if can specialize(new rule) and non redundant(new rule) then

append(specializations, new rule)
end

end
; . Specialize by adding new binary predicates

if is unary(last(predicates(rule))) then
extend(specializations, specialize binary(new rule))

end
return specializations

Algorithm 3: Hedwig’s specialize(rule, B) procedure.


