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Abstract. The paper presents an approach to mining heterogeneous
information networks applied to a task of categorizing customers linked
in a heterogeneous network of products, categories and customers. We
propose a two step methodology to classify the customers. In the first
step, the heterogeneous network is decomposed into several homogeneous
networks using different connecting nodes. Similarly to the construction
of bag-of-words vectors in text mining, we assign larger weights to more
important nodes. In the second step, the resulting homogeneous networks
are used to classify data either by network propositionalization or label
propagation. Because the data set is highly imbalanced we adapt the
label propagation algorithm to handle imbalanced data. We perform a
series of experiments and compare different heuristics used in the first
step of the methodology, as well as different classifiers which can be used
in the second step of the methodology.

Keywords: · Network analysis · Heterogeneous information networks · Network
decomposition · PageRank · Text mining heuristics · Centroid classifier · SVM

1 Introduction

The field of network analysis is well established and exists as an independent
research discipline since the late seventies [24] and early eighties [1]. In recent
years, analysis of heterogeneous information networks [20] has gained popular-
ity. In contrast to standard (homogeneous) information networks, heterogeneous
networks describe heterogeneous types of entities and different types of relations.

This paper addresses the task of mining heterogeneous information networks
[20]. In particular, for a user-defined node type, we use the method of classi-
fying network nodes through network decomposition; this results in homoge-
neous networks whose links are derived from the original network. Following [6],
the method constructs homogeneous networks whose links are weighed with the



number of intermediary nodes, connecting two nodes. After the individual homo-
geneous networks are constructed, we consider two approaches for classification
of network nodes. We classify the nodes either through label propagation [25],
or using a propositionalization approach [6]. The latter allows the use of stan-
dard classifiers such as the centroid and SVM classifier on the derived feature
vector representation. The propositionalization approach was already applied to
a large heterogeneous network of scientific papers from the field of psychology in
our previous work [13]. In this work, we propose two improvements to the pre-
sented methodology: 1) a new variant of label propagation is proposed, resulting
in improved classification performance on imbalanced data sets; 2) new heuris-
tics for homogeneous network construction are proposed, which are inspired by
word weighting heuristics used in text mining and information retrieval.

The paper is structured as follows. Section 2 presents the related work. Sec-
tion 3 presents the two-stage methodology for classification in heterogeneous
networks. We present a method for constructing homogeneous networks from
heterogeneous networks and two methods for classification of nodes in a net-
work: a network propositionalization technique and a label propagation algo-
rithm. Section 4 presents how these two methods are further improved. We first
introduce a variant of the label propagation algorithm, which improves perfor-
mance on imbalanced data sets. We then show how the homogeneous network
construction can be improved by using different weighting heuristics. Section 5
presents the application of the methodology on a challenge data set of customers
linked to products they purchased, followed by the three stage analysis of the
results. First, we examine the effect of using different classifiers in the final
step of classification via propositionalization. Second, we test different heuristics
for homogeneous network construction. Finally, we analyze the improved label
propagation method for imbalanced data sets. Section 6 concludes the paper and
presents the plans for further work.

2 Related work

In network data analysis, instances are connected in a network of connections.
In ranking methods like Hubs and Authorities (HITS) [11], PageRank [18], Sim-
Rank [9] and diffusion kernels [12], authority is propagated via network edges
to discover high ranking nodes in the network. Sun and Han [20] introduced the
concept of authority ranking for heterogeneous networks with two node types
(bipartite networks) to simultaneously rank nodes of both types. Sun et al. [21]
address authority ranking of all nodes types in heterogeneous networks with a
star network schema, while Grčar et al. [6] apply the PageRank algorithm to
find PageRank values of only particular type of nodes.

In network classification, a typical task is to find class labels for some of
the nodes in the network using known class labels of the remaining network
nodes. A common approach is propagation of labels in the network, a concept
used in [25] and [23]. An alternative approach is classification of network nodes
through propositionalization, described in [6]. There, a heterogeneous network is
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Fig. 1. An example of a heterogeneous network, decomposed into a homogeneous net-
work where papers are connected if they share a common author. Weights of the edges
are equal to the number of authors that contributed to both papers

decomposed into several homogeneous networks which are used to create feature
vectors corresponding to nodes in the network. The feature vectors are classified
by SVM [16, 14, 4], kNN [22] or centroid classifier [7] to predict class values of
these nodes. The network propositionalization approach was also used in [13].

Our work is also related to text mining, specifically to bag-of-words vector
construction. Here it is important to correctly set weights of terms in docu-
ments. Simple methods like term frequency are rarely used, as the term-frequency
inverse-document-frequency (tf-idf) weighting introduced in [10] is more efficient.
A number of weighting heuristics which also take into account labels of docu-
ments have been proposed, such as the χ2, information gain [3], ∆-idf [17], and
relevance frequency [15].

3 Methodology

This section addresses the problem of mining heterogeneous information net-
works, as defined by Sun and Han [20], in which a certain type of nodes (called
the target type) is labeled. A two step methodology to mine class labeled hetero-
geneous information networks is presented. In the first step of the methodology,
the heterogeneous network is decomposed into a set of homogeneous networks.
In the second step, the homogeneous networks are used to predict the labels of
target nodes.

3.1 Network decomposition

The original heterogeneous information network is first decomposed into a set of
homogeneous networks, containing only the target nodes of the original network.
In each homogeneous network two nodes are connected if they share a particular
direct or indirect link in the original heterogeneous network. Take as an example
a network containing two types of nodes, Papers and Authors, and two edge



types, Cites (linking papers to papers) and Written by (linking papers to au-
thors). From it, we can construct two homogeneous networks of papers: the first,
in which two papers are connected if one paper cites another, and the second, in
which they are connected if they share a common author (shown in Figure 1).
The choice of links used in the network decomposition step requires expert who
takes the meaning of links into account and chooses only the decompositions
relevant for a given task.

3.2 Classification

In the second step of the methodology, the homogeneous networks are used to
classify the nodes. We compare two approaches to this task: the label propagation
algorithm [25] and the network propositionalization approach [6].

Label propagation. The label propagation algorithm starts with a network ad-
jacency matrix M ∈ Rn,n and a class matrix Y ∈ Rn,|C|, where C = {c1, . . . , cm}
is the set of classes, with which the network nodes are labeled. The j-th column
of Y represents the j-th label of C, meaning that Yij is equal to 1 if the i-th node
belongs to the j-th class and 0 otherwise. The algorithm constructs the matrix
S = D−

1
2MD−

1
2 , where D is a diagonal matrix and the value of each diagonal

element is the sum of the corresponding row of M . The algorithm iteratively
computes F (t) = αSF (t−1)+(1−α)Y until there are no changes in the matrix
F (t). The resulting matrix F is used to predict the class labels of all unlabeled
nodes in the network. Zhou et al. [25] show that the iteration converges to the
same value regardless of the starting point F (0). They also show that the value
F ∗ that F (t) converges to can also be calculated by solving a system of linear
equations, as

F ∗ = (I − αS)−1Y. (1)

To classify a heterogeneous network, decomposed into k homogeneous net-
works, we propose classification of nodes using all available connections from all
k homogeneous network. We construct a new network with the same set of nodes
as in the original homogeneous networks. The weight of a link between two nodes
is calculated as the sum of link weights in all homogeneous networks. In effect,
if the original networks are represented by adjacency matrices M1,M2, . . . ,Mk,
the new network’s adjacency matrix equals M1 +M2 + · · ·+Mk.

Classification by propositionalization. An alternative method for classify-
ing the target nodes in the original heterogeneous network (called network propo-
sitionalization) calculates feature vectors for each target node in the network.
The vectors are calculated using the personalized PageRank (P-PR) algorithm
[18]. The personalized PageRank of node v (P-PRv) in a network is defined as the
stationary distribution of the position of a random walker who starts the walk
in node v and then at each node either selects one of the outgoing connections
or travels to the starting location. The probability (denoted p) of continuing the



walk is a parameter of the personalized PageRank algorithm and is usually set to
0.85. Once calculated, the resulting PageRank vectors are normalized according
to the Euclidean norm. The vectors are used to classify the nodes from which
they were calculated.

For a single homogeneous network, the propositionalization results in one
feature vector per node. For classifying a heterogeneous network, decomposed
into k homogeneous networks, Grčar et al. [6] propose to concatenate and assign
weights to the k vectors, obtained from the k homogeneous networks. The weights
are optimized using a computationally expensive differential evolution [19]. A
simpler alternative is to use equal weights and postpone weighting to the learning
phase; due to the size of feature vectors in our experiments, we decided to follow
this approach. Many classifiers, for example SVM classifier [16, 14, 4], kNN
classifier [22] or a centroid classifier [7] can be used.

4 Methodology improvement

We present two improvements to the methodology described in Section 3. First,
we describe handling of imbalanced data sets, then we present a novel edge
weighting approach used in the construction of homogeneous networks from the
original network.

4.1 Imbalanced data sets and label propagation

The label propagation algorithm, as defined in [25], works by simply propagat-
ing class labels from each member, belonging to a certain class. By doing so,
it seems possible that the algorithm may have a tendency to over-estimate the
importance of larger classes (those with more instances) in the case when data
is imbalanced. For example, Figure 2 shows an example in which the label prop-
agation algorithm will classify the central node as belonging to the first (larger)
class, simply because it has three neighbors of class 1 and only two neighbors of
class 2. This may, in some cases, not be the ideal outcome. It could be argued
that the node we wish to classify is actually adjacent to all elements of class 1,
but only some elements of class 2. Therefore, in this relative sense, class 1 nodes
cast a stronger vote in favor of class 1 than nodes of class 2.

Using the reasoning described above, we see that there is a reason to believe
that the label propagation approach may not perform well if the data is highly
imbalanced, i.e., if the frequency of class labels are not approximately equal.
We propose an adjustment of the label propagation algorithm i.e., to change
the initial label matrix Y so that larger classes have less effect in the iterative
process. The value of the label matrix Y in this case is no longer binary, but it
is set to 1

|cj | if node i belongs to class j and 0 otherwise.

If the data set is balanced (all class values are equally represented), then the
matrix Y is equivalent to the original binary matrix multiplied by the inverse
of the class value size. This, along with (1), means that the resulting prediction
matrix only changes by a constant and the final predictions remain unchanged.
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Fig. 2. Results of a label propagation algorithm on an imbalanced data set. If we run
the label propagation algorithm as originally defined, each labeled node begin their
iteration with a weight of 1 for the class they belong to. In each step of the iteration,
every node collects the votes from its neighboring nodes and adds a portion (defined
by α which was set to 0.6 in this example) of its original weight. We calculate that in
this case, the central node receives a proportional vote of 0.40 from class 1 and a vote
of 0.60 from class 2. However, using our modified weights, the labeled nodes start their
iteration with a weight of 1

2
for the class with 2 nodes and 1

4
for the class with 4 nodes.

Because of this, the proportion of votes for class 1 increases to 0.57. This is justified
by the fact that the central node actually receives the highest possible vote that it can
from a class consisting of only two nodes.

However, if the data set is imbalanced, smaller classes have a larger effect in
the iterative calculation of F ∗. This prevents votes of more frequent classes to
outweigh votes of less frequent classes.

4.2 Text mining inspired weights calculation

We shortly present weighting of terms in the construction of bag-of-words (BOW)
vectors and explain how the same ideas can be applied to extraction of homoge-
neous networks from heterogeneous networks.

Term weighting in text mining. In bag-of-words vector construction one
feature vector represents each document in a corpus of documents. In that vector,
the i-th value corresponds to the i-th term (a word or a n-gram) that appears
in the corpus. The value of the feature depends primarily on the frequency of
the term in the particular document. We describe several methods for assigning
the feature values. We use the following notations: f(t, d) denotes the number
of times a term t appears in the document d and D denotes the corpus (a
set of documents). We assume that the documents in the set are labeled, each
document belonging to a class c from the set of all classes C. We use the notation
t ∈ d to describe that a term t appears in document d. Where used, the term
P (t) is the probability that a randomly selected document contains the term t,
and P (c) is the probability that a randomly selected document belongs to class
c.



Scheme Formula

tf f(t, d)

if-idf f(t, d) · log

(
|D|

|{d′ ∈ D : t ∈ d′}|

)
chi^2 f(t, d) ·

∑
c∈C

(
(P (t ∧ c)P (¬t ∧ ¬c)− P (t ∧ ¬c)P (¬t ∧ c))2

P (t)P (¬t)P (c)P (¬c)

)

ig f(t, d) ·
∑
c∈C

 ∑
c′∈{c,¬c}

 ∑
t′∈{t,¬t}

(
P (t′, c′) · log

P (t′ ∧ c′)
P (t′)P (c′)

)
delta-idf f(t, d) ·

∑
c∈C

(
log

|c|
|{d′ ∈ D : d′ ∈ c ∧ t ∈ d′}| − log

|¬c|
|{d′ ∈ D : d′ /∈ c ∧ t /∈ d′}|

)
rf f(t, d) ·

∑
c∈C

(
log

(
2 +
|{d′ ∈ D : d′ ∈ c ∧ t ∈ d′}|
|{d′ ∈ D : d′ /∈ c ∧ t /∈ d′}|

))
Table 1. Term weighing in text mining.

Table 1 shows different methods for term weighting. The term frequency (tf)
weights each term with its frequency in the document. The term frequency–
inverse document frequency (tf-idf) [10] addresses the drawback of the tf

scheme, which tends to assign high values to common words that appear fre-
quently in the corpus. The χ2 (chi^2) weighting scheme [3] attempts to correct
another drawback of the tf scheme (one which is not addressed by the tf-idf

scheme) by taking also class value of processed documents into consideration.
This allows the scheme to penalize terms that appear in documents of all classes,
and favor terms which are specific to some classes. Information gain (ig) [3] uses
class labels to improve term weights. The ∆-idf (delta-idf) [17] and the Rel-
evance frequency (rf) [15] attempt to merge the ideas of idf and both above
class-based schemes by penalizing both common and non-informative terms.

Midpoint weighting in homogeneous network construction. Let us re-
visit the example from Section 3.1, in which two papers are connected by one
link for each author they share. The resulting network is equivalent to a network
in which two papers are connected by a link with a weight equal to the number
of authors that wrote both papers (Figure 1). The method treats all authors
equally which may not be correct. For example, if two papers share an author
that only co-authored a small number of papers, it is more likely that these
two papers are similar than if the two papers share an author that co-authored
tens or even hundreds of papers. The first pair of papers should therefore be
connected by a stronger weight than the second. Moreover, if the papers are
labeled by the research field, then two papers, sharing an author publishing in
only one research field, are more likely to be similar as if they share an author
who has co-authored papers in several research fields. Again, the first pair of
papers should be connected by the edge with larger weight.

Both described considerations are similar to the issues addressed in the term
weighting schemes in document retrieval (presented at the beginning of this



section). For example, the tf-idf weighting scheme attempts to decrease the
weight of terms which appear in many documents, while we wish to decrease the
weight of links, induced by authors which are connected to many papers. The
ig weighting scheme decreases the weight of terms which appear in variously
labeled documents, while we wish to decrease the weight of links induced by
authors appearing in different research areas i.e., connected to variously labeled
papers.

We alter the term weighting schemes in such a way that they can be used
to set weights to midpoints in heterogeneous graphs (such as authors in our
example). We propose that the weight of a link between two base nodes in the
first step of the methodology (see Section 3) is calculated as the sum of weights
of all the midpoints they share. In particular, if we construct a homogeneous
network in which nodes are connected if they share a connection to a node of
type T in the original heterogeneous network, then the weight of the link between
nodes v and w should be equal to ∑

m∈T :(m,v)∈E∧(m,w)∈E

w(m), (2)

where w(m) is the weight assigned to the midpoint m. The value of w(m) can
be calculated in several ways. Table 2 shows the proposed midpoint weighting
heuristics corresponding to term weighting used in document retrieval (Table 1).
The notation used was as follows. We denote with B the set of all nodes of the
base node type, and with E the set of all edges of the heterogeneous network.
When m is a node, P (m) denotes the probability that a random base node is
connected to the midpoint node m. We assume that nodes are labeled, each
belonging to a class c from the set of all classes C. We use P (c) to denote the
probability that a random base node is in class c. The term P (c∧m) denotes the
probability that a random base node is both in class c and linked to midpoint
m.

Scheme Formula

tf 1

if-idf log

(
|B|

|{b ∈ B : (b,m) ∈ E}|

)
chi^2

∑
c∈C

(P (m ∧ c)P (¬m ∧ ¬c)− P (m,¬c)P (¬m, c))2

P (m)P (c)P (¬m)P (¬c)

ig
∑
c∈C

 ∑
c′∈{c,¬c}

 ∑
m′∈{m,¬m}

P (m′ ∧ c′) log

(
P (m′ ∧ c′)
P (c′)P (m′)

)
delta-idf

∑
c∈C

∣∣∣∣log
|c|

|{b′ ∈ B : b′ ∈ c ∧ (b′,m) ∈ E}| − log
|¬c|

|{b′ ∈ B : b′ /∈ c ∧ (b′,m) /∈ E}|

∣∣∣∣ .
rf

∑
c∈C

(
log

(
2 +
|{b′ ∈ B : b′ ∈ c ∧ (b′,m) ∈ E}|
|{b′ ∈ B : b′ /∈ c ∧ (b′,m) /∈ E}|

))
Table 2. Heuristics for weighting midpoints in homogeneous network construction.



The tf weight is effectively used in [6], where all authors are weighed equally.
The delta-idf weighting scheme, unlike other term weighting schemes, may
assign negative weights to certain terms. Since link weights in graphs are assumed
to be positive both by the PageRank and the link propagation algorithm, we must
change the weighting scheme before it can be used to construct homogeneous
networks. We propose that in the original weighting scheme, terms which receive
negative values are deemed informative, as they are informative about the term
not being typical of a certain class. Therefore it is reasonable to take the absolute
values of the weights in network construction.
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Fig. 3. The decomposition of the toy network from Figure 1 using the χ2 heuristic.
The blue color denotes that the paper belongs to class 1 and the red color denotes class
2.

Example 1. Figure 3 shows the decomposition of the network, seen in Figure 1,
using the χ2 heuristic. The weight of the central author m is calculated as the
sum over both classes of

(P (m ∧ c)P (¬m ∧ ¬c)− P (m,¬c)P (¬m, c))2

P (m)P (c)P (¬m)P (¬c)
(3)

When c is the first (blue) class, we can calculate the required values as P (m∧c) =
2
4 , P (¬m ∧ ¬c) = 1

4 , P (m,¬c) = 1
4 , P (¬m ∧ c) = 0; P (m) = 3

4 , P (¬m) = 1
4 ,

P (c) = P (¬c) = 1
2 , yielding the first summand of 3 as

( 2
4 ·

1
4 −

1
4 · 0)2

3
4 ·

1
4 ·

1
2 ·

1
2

=
1

3
.

When c is the second class, after calculating P (m∧c) = P (¬m∧¬c) = P (m,¬c) =
P (¬m ∧ c) = 1

4 , we see that the second summand of 3 is 0 and the total weight
of author m is 1

3 .
The weights of the remaining authors are calculated in the same way. In our

case, none of the other authors wrote papers from both classes, so their weights
are all equal to 2.



The decomposed network on the left is constructed by summing the weights of
all common authors for each pair of papers. We see that the connection between
papers a and b is now weaker because their common author was assigned a
smaller weight.

5 Experimental setting and results

In this section, we describe the experiments used to evaluate the performance
of the presented classifiers. We first describe the data set we used in our experi-
ments. Then, we present the experiment set up and results.

5.1 Data set description

We evaluated the proposed weighting heuristics on a data set of customer pur-
chases used in the PAKDD 2015 mining competition Gender prediction based
on e-commerce data. The data consists of 30, 000 customers. The data for each
customer consists of the gender (the target variable), the start and end time of
the purchase, and the list of products purchased. A typical product is described
by a 4-part string (for example: A3/B5/C2/D8). The strings describe a 4-level
hierarchy of products, meaning that the example product is the product D8 (or
D-level category) which belongs to (A-level) category A3, sub-category (or B-
level category) B5 and sub-subcategory (or C-level category) C3. The category
levels are consistent, meaning that if two products belong to the same B-level
category, they also belong to the same A-level category. The data set is highly
imbalanced: 23, 375 customers are women and 6, 625 are men.

For the purpose of our experiments, we ignored the temporal aspects of the
data set and only focused on the products the customers purchased. This allowed
us to view the data set as an implicitly defined heterogeneous network. The
network consists of five node types: customers (the base node type) and four
hierarchy levels. In this heterogeneous network, every purchase by a customer
defines four edges in the heterogeneous network: one edge between the customer
and each (sub)category to which the product belongs.

We constructed four homogeneous networks from the original heterogeneous
network. In the first, two customers are connected if they purchased the same
product (same D-level item), i.e. if they are connected by a path in the original
network that goes through a D-level item. In the second, they are connected
if they purchased a product in the same sub-subcategory (C-level item), in the
third if they purchased the same B-level item and in the fourth if they purchased
the same A-level item. The constructed networks are referred to as A-, B-, C-
and D-level networks from this point on.

5.2 Experiment description

The first set of experiments was designed to determine if the results of [6], which
show that a centroid classifier, trained on Personalized PageRank feature vectors,



performs as good as the more complex SVM classifier. We tested the performance
of the centroid classifier, the k-nearest neighbors classifier (with k set to 1, 2, 5
and 10), and the SVM classifier. Because the data set is imbalanced we tested the
SVM classifier both with uniform instance weights as well as weights proportional
to the class frequencies. The tests were performed on feature vectors extracted
from all four homogeneous networks. We randomly sampled 3, 000 network nodes
to train all classifiers and tested their performance on the remaining 27, 000
nodes. The small size of the training set ensured that the training phase was
fast.

In the second set of experiments we tested the heuristics, used in the con-
struction of the homogeneous networks. We tested three classifiers. The first was
the SVM classifier using solely the Personalized PageRank vectors extracted
from the network. As the results of the first experiment showed that weights,
proportional to the class frequencies, improve the classification accuracy of the
SVM classifier, we used the same weights for this set of experiments. The second
classifier we tested was the label propagation classifier as defined in [25], which
classified the network nodes using the graph itself. The third classifier was the
label propagation classifier with the starting matrix Y , adjusted for the class
frequencies, as proposed in Section 3.2. The goal of this round of experiments
was to both compare the label propagation classifier with the SVM classifier
and evaluate whether the adjusted starting matrix Y has an effect on classifier
performance. As in experiment 1, we trained the classifiers on a randomly sam-
pled set of 3, 000 network nodes and tested their performance on the remaining
27, 000 nodes.

In the third round of experiments, we tested the performance of the label
propagation and propositionalization based classifiers on all four homogeneous
networks. Based on the results of the first two sets of experiments, we used the
SVM classifier for the propositionalization approach and the label propagation
method with the modified starting matrix Y. As explained in Section 3.2, we
constructed feature vectors for SVM classifiers by concatenating feature vectors
of individual homogeneous networks. We constructed the adjacency matrix for
the label propagation algorithm by summing the four adjacency matrices. One
of the goals of the third round of experiments was to test the performance of
the classifiers when they are trained on a large data set. This motivated us to
train the classifiers on 90% of the data set and test their performance on the
remaining 10%.

In all experiments we evaluated the accuracy of the classifiers using the bal-
anced accuracy metric. This is the metric used in the PAKDD’15 Data Mining
Competition and is defined as

|{Correctly classified male customers}|
|{All male customers}| + |{Correctly classified female customers}|

|{All female customers}|

2
. (4)



Classifier: Centroid 1-nn 2-nn 5-nn 10-nn SVM SVM (balanced weights)

A-level network 74.19% 63.61% 71.93 72.74% 74.36% 74.03% 74.62%
B-level network 70.78% 56.42% 59.17% 65.30% 67.73% 63.51% 72.61%
C-level network 64.71% 63.62% 67.21% 68.26% 71.65% 70.15% 75.18%
D-level network 60.08% 67.36% 70.39% 66.72% 66.06% 65.61% 71.17%

(a) Results of the first set of experiments.

Scheme A-level B-level C-level D-level

tf 76.61% 74.00% 77.34% 73.65%
chi^2 77.80% 74.17% 76.86% 68.76%
idf 77.80% 74.22% 77.23% 72.25%
delta 77.80% 74.14% 77.23% 72.52%
rf 77.80% 74.11% 76.81% 70.54%
ig 77.80% 74.12% 76.87% 68.72%

(b) Performance of the SVM classifier in
the second round of experiments.

Scheme A-level B-level C-level D-level

tf 75.52% 64.28% 63.60% 72.44%
chi^2 76.02% 65.15% 71.95% 72.75%
idf 74.90% 63.83% 61.02% 72.48%
delta 74.90% 63.76% 61.05% 72.48%
rf 75.52% 64.28% 67.59% 72.55%
ig 76.02% 65.15% 72.41% 72.96%

(c) Performance of the label propagation
classifier in the second round of experi-
ments.

Scheme A-level B-level C-level D-level

tf 77.16% 74.75% 77.28% 73.91%
chi^2 77.16% 74.44% 77.61% 73.82%
idf 77.20% 74.70% 77.74% 73.76%
delta 77.20% 74.71% 77.74% 73.76%
rf 77.16% 74.59% 77.21% 74.03%
ig 77.16% 74.49% 77.59% 73.79%

(d) Performance of the balanced label
propagation classifier in the second round
of experiments.

Scheme SVM Label propagation

tf 81.35% 77.06%
chi^2 81.78% 77.10%
idf 82.09% 79.03%
delta 81.94% 79.08%
rf 81.49% 77.16%
ig 81.56% 77.12%

(e) The results of the third set of ex-
periments showing the balanced ac-
curacies of the SVM and label prop-
agation classifiers on the entire data
set.

5.3 Experimental results

The first set of experiments, shown in Table 3a, shows that there is a large differ-
ence in the performance of different classifiers. Similarly to Grčar et al. [6], the
simple centroid classifier performs well on feature vectors extracted from sev-
eral different homogeneous networks. However, the classifier is still consistently
outperformed by the SVM classifier if the instance weights of the classifiers are
set according to the class sizes. We conclude that the optimal classifier for the
methodology, introduced in [6], depends on the data set.

The results of the second set of experiments are shown in Tables 3b, 3c and
3d. When comparing the results of the two label propagation approaches the
results show that label propagation with adjusted starting matrix has large im-
pact on the performance of the classifier, as the balanced accuracy increases by
1–2% in the case of the A- and D-level network and even more in the case of
B- and C-level networks. This result confirms the intuition that, in Section 3.2,
motivated the construction of the adjusted starting matrix.
Different heuristics used in construction of homogeneous networks also affect the



final performance of all three classifiers. No heuristic consistently outperform the
others, meaning that the choice of heuristic is application dependent. The last
conclusion of the second round of experiments is that the computationally de-
manding propositionalization method does not outperform the label propagation
method. In all four networks choosing the correct heuristic and correct weights
for the starting matrix allows the label propagation method to perform compa-
rably to the SVM classifier.

Table 3e shows the results of the third set of experiments. In this experiment,
the propositionalization-based approach clearly outperforms the label propaga-
tion algorithm. It is possible that this effect occurs because the network propo-
sitionalization approach, in particular the SVM classifier, require more training
examples (compared to the network propagation classifier) to perform well. A
second explanation may come from the way the four networks were combined in
our experiments (i.e. the concatenation approach in the case of network proposi-
tionalization and the matrix sum in the case of label propagation). By summing
the adjacency matrices before performing label propagation, we implicitly as-
sumed that the connections between customers that purchased the same D-level
product, are equally important as connections between customers that purchased
the same A-level product. This may cause the amount of A-level edges to ever-
whelm the effects of the D level edges, causing the resulting network to be very
similar to the original A level network. The propositionalization based approach
is less prone to an error of this type, as the idea of the SVM algorithm is to
define correct weights for elements of the feature vectors. The SVM algorithm
is therefore flexible enough to assign larger weights to the features, produced by
the D-level network, if it estimates that these features are more important in
classification.
The second conclusion we can draw from the third set of experiments is that
the effect of using weighting heuristics in the construction of the homogeneous
networks is still obvious. With both classification methods the adjusted delta

and idf heuristics perform best.

6 Conclusions and further work

While network analysis is a well established research field, analysis of heteroge-
neous networks is much newer and less researched. Methods taking the hetero-
geneous nature of the networks into account show an improved performance [2].
Some methods like RankClus and others presented in [20] are capable of solv-
ing tasks that cannot be defined with homogeneous information networks (like
clustering two disjoint sets of entities). Another important novelty is combin-
ing network analysis with the analysis of node data, either in the form of text
documents or results obtained from various experiments [5, 8, 6].

The contributions of the paper are as follows. By setting the weights of the
initial class matrix proportionally to the class value frequency, we improved the
performance of the label propagation algorithm when applied to a highly im-
balanced data set. We adapted heuristics, developed primarily for use in text



mining, for the construction of homogeneous networks from heterogeneous net-
works. Our results show that the choice of heuristics impacts the performance of
both label propagation classifier and classifiers based on the propositionalization
approach of [6]. We also present a variation of the label propagation approach,
described in [25].

In future work, in-depth analysis of the network construction heuristics and
their performance in classifiers applied to homogeneous networks will be pursued.
We plan to design efficient methods for propositionalization of large data sets
and decrease the computational load of PageRank calculations by first detecting
communities in a network. Such “pre-processing” should reduce the size of a
network on which PageRank calculations are to be performed.

We plan to test the methods, described in this paper, on publicly available
data sets such as the DBLP, Cora and CiteSeer databases. The presented heuris-
tics shall be evaluated on the methodology for mining text enriched heteroge-
neous networks presented in [6]. For that, one has to construct a heterogeneous
network in which the central node represents genes, connected to the response
of plants against an infection. We will enrich the nodes with papers from the
PubMed database which mention the genes.
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