
Internal Report

Deliverable 2.2:

Implementing workflows, developed in WP1, in the

ClowdFlows development environment
Jozef Stefan Institute Version 1 FINAL

Document administrative information
Project acronym:
Project number:
Deliverable number:
Deliverable full title:

Document identifier:
Lead partner short name:
Report version:
Report preparation date:
Lead author:
Co-authors:
Status:

HinLife
J7-7303
D2.2
Implementing workflows, developed in WP1, in the ClowdFlows development
environment
HinLife-del-D2.1-ClowdFlows-workflows-v0.2.docx
Jožef Stefan Institute
0.2, final
20/02/2018
Jan Kralj
Nada Lavrač
Final

Financed by Slovenian Research Agency 1

HinMine Workflow in ClowdFlows
We implemented all the functions, used in our experiments with the HinMine methodology, in the
ClowdFlows platform. The resulting workflow is shown in Figure 1. The workflow begins by loading a
data set encoded as a .gml file. The GML (Graph Modeling Language) [2] is a text format that allows

for easy representation of network data. For the HinMine methodology, the input requires that each
node in the network is of a given type. In the online example, the methodology is run on a subset of
the IMDB data set containing nodes of type person and nodes of type movie. One node type (the

base node type for the HinMine methodology) must be labeled, and if more than one label is
applicable for a node, the labels must be separated by a ------ separator. An example of a node

looks as follows:

 node [
 id 6336
 label "movie_303"
 labels "Action---Adventure---Western"
 type "movie"
 name "movie_the-quick-and-the-dead"
]

The methodology loads the GML file in the widget Read GML from file, where it identifies the base
node type (the node type that is labeled) and training instances (all instances that are labeled). The
loaded network is passed as the variable net to the HinMine-Decompose widget where network

decomposition is applied. This is an interactive widget that, when first run, provides all possible
decompositions of the input network. The widget discovers all possible decomposition paths and
allows the user to choose which decompositions to perform. After performing the decompositions, the
widget returns the decomposed network in the variable net. Figure 2 shows the possible

decompositions of the online example. After decomposition, the methodology has two options:

Financed by Slovenian Research Agency 2

Figure 1: Overview of the HinMine methodology as a workflow in the Clowdflows platform.

Figure 2: The decomposition selection in HinMine.

1. If we classify the data set with label propagation, we can use the Apply Label Propagation
widget. This widget performs label propagation on the network and returns the results as a
numpy [3] array (variable res).

2. If we classify the data using propositionalization, the HinMine-Propositionalize} widget
performs the network propositionalization described in Section 3.1 of Deliverable 1.3b. This
widget constructs the feature vectors for the labeled (training, variable tra) and unlabeled

(test, variable tes) nodes separately. In this way, the classifier can be trained using the Build

MultiLabel Classifier widget on the training set. In classifier construction using the Build
MultiLabel Classifier, any learner capable of predicting labels on data sets containing numeric
values can be used as the inuput variable lea. In the online example, we use the k-nearest

neighbours classifier. Finally, the induced classifier is applied to the test set and a numpy array
is returned as a result in the variable res.

Both options above result in the workflow returning a numpy array. The array's columns represent the
labels of the data set and the rows represent the unlabeled nodes. Each row contains results of label
propagation applied to the given unlabeled node. The result is a vector of values between 0 and 1, and
the higher the value, the more likely it is that the label is applicable to the given node.

NetSDM Workflow in ClowdFlows

The workflow, implementing the NetSDM methodology which was described in more detail in
Deliverable 1.3c is shown in Figure 3 and is also available online2. The workflow begins by loading the
background knowledge (denoted as the input variable bk) and the set of examples (denoted as the
variable ex). This step is the same as the first step of the Hedwig [4] methodology which is also
available in the ClowdFlows platform3. The background knowledge file is then loaded into the netSDM-
reduce widget which prunes the background knowledge network. Double-clicking on the widget allows
the user to change the parameters of the NetSDM algrithm:

• the advaced_removal checkbox determines whether the algorithm will use the advanced or

naive node removal method,
• checking the hyper checkbox causes the algorithm to construct a hypergraph out of the

background ontologies instead of using the naive network conversion,
• the directed checkbox tells the algorithm whether to take directions of network edges into

account when calculating network scores,
• \emph minimum ranking determinines how much of the background knowledge should

remain in the pruned data set.

2
 http://clowdflows.org/workflow/11015/

3 http://clowdflows.org/workflow/7031/

Financed by Slovenian Research Agency 3

Figure 3: Overview of the NetSDM methodology as a workflow in the Clowdflows platform.

The widget returns two objects: the pruned background knowledge set bk) and the newly annotated

set of examples ex. These two objects can be used to discover rules in the widget Hedwig that runs

the Hedwig SDM algorithm [4].

References
[1] Kranjc, J., Podpečan, V., & Lavrač, N. (2012). Clowdflows: A Cloud Based Scientific Workflow
Platform Joint European Conference on Machine Learning and Knowledge Discovery in
Databases (pp. 816-819). Springer.
[2] Himsolt, M. (1997). GML: A Portable Graph File Format . Universität Passau.
[3] Walt, S. v. d., Colbert, S. C., & Varoquaux, G. (2011). The Numpy Array: A Structure
for Efficient Numerical Computation. Computing in Science & Engineering , 13 (2), 22-30.
[4] Vavpetič, A. (2016). Semantic Subgroup Discovery (Doctoral dissertation, Jozef Stefan
International Postgraduate School).
[5]

Financed by Slovenian Research Agency 4

Figure 4: Selecting the parameters for the NetSDM
widget.

