
Internal Report

Deliverable 2.3:

Final implementation of ClowdFlows or TextFlows,

including the final HINMINE workflow, demonstrated

on nontrivial knowledge discovery benchmark

problems

Jozef Stefan Institute Version 1 FINAL

Abstract: We present the implementation of the HinMIne methodology in the online workflow
development and sharing platform ClowdFlows. We present the workflow, implementing the
methodology, and all the widgets that comprise the workflow. We also explain the format of the
workflow’s inputs and outputs. The Hinmine methodology was also used in a further paper on
targeted end-to-end knowledge graph decomposition where it was applied to a biological data set.
Abstract of the paper: Knowledge graphs are networks with annotated nodes and edges,
representing different relations between the network nodes. Learning from such graphs is becoming
increasingly important as numerous real-life systems can be represented as knowledge graphs,
where properties of selected types of nodes or edges are learned. This paper presents a fully
autonomous approach to targeted knowledge graph decomposition, advancing the state-of-the-art
HINMINE network decomposition methodology. In this methodology, weighted edges between the
nodes of a selected node type are constructed via different typed triplets, each connecting two
nodes of the same type through an intermediary node of a different type. The final product of such a
decomposition is a weighted homogeneous network of the selected node type. HINMINE is
advanced by reformulating the supervised network decomposition problem as a combinatorial
optimization problem, and by solving it by a differential evolution approach. The proposed approach
is tested on node classification tasks on two real-life knowledge graphs. The experimental results
demonstrate that the proposed end-to-end learning approach is much faster and as accurate as the
exhaustive search approach.

Document administrative information
Project acronym:
Project number:
Deliverable number:
Deliverable full title:

Document identifier:
Lead partner short name:
Report version:
Report preparation date:
Lead author:
Co-authors:
Status:

HinLife
J7-7303
D2.3
Final implementation of ClowdFlows or TextFlows, including the final HINMINE
workflow, demonstrated on nontrivial knowledge discovery benchmark problems
HinLife -del-D2.3-clowdflows-benchmark
JSI
final
31/12/2018
Jan Kralj
Blaž Škrlj
Final

Financed by Slovenian Research Agency 1

Introduction
The deliverable 2.3 of WP2 includes the final implementation of ClowdFlows, including the final version of the
HinMine workflow. We implemented all the functions, used in our experiments with the HinMine methodology,
in the ClowdFlows platform. The methodology is fully available as an online workflow, and the code for the
workflow is also publicly available on a GitHub repository.

ClowdFlows workflow overview

The resulting workflow is shown in Figure 1. The workflow begins by loading a data set encoded as a .gml file.
The GML (Graph Modeling Language) [1] is a text format that allows for easy representation of network data.
For the HinMine methodology, the input requires that each node in the network is of a given type. In the online
example, available on the address http://clowdflows.org/workflow/11019/, the methodology is run on a subset of
the IMDB data set containing nodes of type person and nodes of type movie. One node type (the base node
type for the HinMine methodology) must be labeled, and if more than one label is applicable for a node, the
labels must be separated by a --- separator. An example of a node looks as follows:

 node [
 id 6336
 label "movie_303"
 labels "Action---Adventure---Western"
 type "movie"
 name "movie_the-quick-and-the-dead"
]

Actions, performed by the workflow widgets
The methodology loads the GML file in the widget Read GML from file, where it identifies the base node type
(the node type that is labeled) and training instances (all instances that are labeled). The loaded network is passed
as the variable net to the widget HinMine-Decompose where network decomposition is applied. This is an
interactive widget that, when first run, provides all possible decompositions of the input network. The widget
discovers all possible decomposition paths and allows the user to choose which decompositions to perform. After
performing the decompositions, the widget returns the decomposed network in the variable net. Figure 2 shows
the possible decompositions of the online example. After decomposition, the methodology has two options:

Financed by Slovenian Research Agency 2

Figure 1: Overview of the HinMine methodology as a workflow in the Clowdflows platform.

1. If we classify the data set with label propagation, we can use the Apply Label Propagation widget. This
widget performs label propagation on the network and returns the results as a numpy [2] array (variable
res).

2. If we classify the data using propositionalization, the HinMine-Propositionalize widget performs the
network propositionalization described in [3]. This widget constructs the feature vectors for the labeled
(training, variable tra) and unlabeled (test, variable tes) nodes separately. In this way, the classifier
can be trained using the Build MultiLabel Classifier widget on the training set. In classifier construction
using the Build MultiLabel Classifier, any learner capable of predicting labels on data sets containing
numeric values can be used as the inuput variable lea. In the online example, we use the k-nearest
neighbours classifier. Finally, the induced classifier is applied to the test set and a numpy array is
returned as a result in the variable res.

Both options above result in the workflow returning a numpy array. The array's columns represent the labels of
the data set and the rows represent the unlabeled nodes. Each row contains results of label propagation applied to
the given unlabeled node. The result is a vector of values between 0 and 1, and the higher the value, the more
likely it is that the label is applicable to the given node.

References
[1] Himsolt, M. (1997). GML: A Portable Graph File Format. Universität Passau.
[2] Walt, S. v. d., Colbert, S. C., & Varoquaux, G. (2011). The Numpy Array: A Structure for Effi-cient
Numerical Computation. Computing in Science & Engineering, 13 (2), 22 ﾧ 30.
[3] Kralj, J., Robnik-Sikonja, M., Lavrač, N.: HINMINE: Heterogeneous information network mining with
information retrieval heuristics. Journal of Intelligent Information Systems (2017) 1–33
[4] Skrlj, B., Kralj, J., Vavpetič, A., Lavrač, N.: Community-based semantic subgroup discovery. In: Proceedings
of New Frontiers in Mining Complex Patterns Workshop (2018) 182– 196
[5] Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Eppig, J. T., et al. (2000).
Gene Ontology: Tool for the Unication of Biology. Nature genetics, 25 (1), 25.
[6] Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., BroackesCarter, F., Campbell, N.H., Chavali,
G., Chen, C., del Toro, N., Duesbury, M., Dumousseau, M., Galeota, E., Hinz, U., Iannuccelli, M., Jagannathan,
S., Jimenez, R., Khadake, J., Lagreid, A., Licata, L., Lovering, R.C., Meldal, B., Melidoni, A.N., Milagros, M.,
Peluso, D., Perfetto, L., Porras, P., Raghunath, A., Ricard-Blum, S., Roechert, B., Stutz, A., Tognolli, M., van
Roey, K., Cesareni, G., Hermjakob, H.: The MIntAct project–IntAct as a common curation platform for 11
molecular interaction databases. Nucleic Acids Research 42(Database issue) (January 2014) D358–63

Use of HinMine on a real-world data set
The HinMine algorithm was already used on an two from the biological domain.

In the first use case, the HinMine algorithm was used as part of an algorithm that performs targeted end-to-end
graph decomposition. The algorithm is described in detail below. The data set used used is the recently
introduced epigenetics knowledge graph [4], where proteins, genes and other biological entities are connected
with different relations. Further, different protein-protein interactions are annotated with ground-truth edge
weights corresponding to reliability of interactions. We annotate each protein in the network with the
corresponding Gene Ontology [5] terms, associated with their functions, which is achieved as follows.
Functional annotations are obtained from the Intact database [6]. We sort annotations by frequency and select
100 of the most common terms, which correspond to 100 classes being predicted. The classification goal for this
dataset is thus protein function prediction. The network consists of 2,204 nodes and 2,772 edges. Of the nodes,
456 belong to the target type. Details of this use case are available in the paper, attached to this document.

Financed by Slovenian Research Agency 3

In the second use case, the HinMine algorithm was used in DDeMON (Dynamic Deep learning from temporal
Multiplex Ontology-annotated Networks), an approach for scalable, systems-level inference of function
annotation using time-dependent multiscale biological information. We demonstrate the use of the proposed
method on recently introduced experimental expression data, discovering multiple novel biomarkers, valuable
for understanding pathogen response, as well as preliminary disease detection. The implementation and testing
of DdeMON are described in the technical report attached to this document.

Financed by Slovenian Research Agency 4

Targeted End-to-end Knowledge Graph
Decomposition

Blaž Škrlj1,2, Jan Kralj2, and Nada Lavrač2,3

1 Jožef Stefan Int. Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
2 Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

3 University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia
{blaz.skrlj,jan.kralj,nada.lavrac}@ijs.si

Abstract. Knowledge graphs are networks with annotated nodes and
edges, representing different relations between the network nodes. Learn-
ing from such graphs is becoming increasingly important as numerous
real-life systems can be represented as knowledge graphs, where proper-
ties of selected types of nodes or edges are learned. This paper presents
a fully autonomous approach to targeted knowledge graph decomposi-
tion, advancing the state-of-the-art HINMINE network decomposition
methodology. In this methodology, weighted edges between the nodes of
a selected node type are constructed via different typed triplets, each
connecting two nodes of the same type through an intermediary node of
a different type. The final product of such a decomposition is a weighted
homogeneous network of the selected node type. HINMINE is advanced
by reformulating the supervised network decomposition problem as a
combinatorial optimization problem, and by solving it by a differential
evolution approach. The proposed approach is tested on node classifica-
tion tasks on two real-life knowledge graphs. The experimental results
demonstrate that the proposed end-to-end learning approach is much
faster and as accurate as the exhaustive search approach.

Keywords: Knowledge graphs, network analysis, supervised machine
learning

1 Introduction

Network analysis was established as an independent research discipline in the
early eighties [1]. While it initially addressed the analysis of homogeneous infor-
mation networks, analysis of heterogeneous information networks [2] has recently
gained a lot of attention. In contrast with standard (homogeneous) information
networks, heterogeneous information networks describe heterogeneous types of
entities and different types of relations. Examples of heterogeneous networks
are e.g., biological networks that contain different entity types such as species,
genes, Gene Ontology annotations [3], proteins, metabolites, etc. There are di-
verse types of links between such mixed biological entities; for example, genes
can belong to species, encode proteins, be annotated by an ontology annotation,
and so on.

2 Škrlj et al.

In this work we focus on knowledge graphs [4], i.e. heterogeneous information
networks with annotated nodes and annotated (relation-labeled) edges, like in
the following examples from a biological knowledge graph:

protein1
interactsWith−−−−−−−−→ protein2

protein1
annotatedWith−−−−−−−−−→ functionA

protein2
annotatedWith−−−−−−−−−→ functionB

Some of the common tasks on knowledge graphs [5] include relation ex-
traction, triplet classification, entity recognition as well as entity classification,
where the task is to assign correct labels to a specific set of nodes in a knowl-
edge graph. For example, if the nodes are different proteins, one of the possi-
ble goals is to classify the proteins based on their function. Take another ex-
ample, where the nodes are different movies, and the goal is to classify the
movies to different genres. The problem arises when different relations between
individual movies and other movies, actors or directors are considered (e.g.,

actor1
actsIn−−−−→ movie5

directedBy−−−−−−−→ director4).
The problem of node classification can be formally stated as follows. Let

G = (N,E,R,C) represent a knowledge graph, where N is a set of nodes (of
possibly different types), E a set of edges, R a set of relations on edges and C the
set of classes assigned to nodes. The goal is to construct a mapping θ : N → C,
which assigns the most probable class to a node to be classified.

One of the possible approaches to node classification is through network de-
composition [6, 7], where a knowledge graph is aggregated into a homogeneous
network consisting of a single target node type, and the information derived from
the graph is encoded in the form of weighted edges of the aggregated homoge-
neous network. Different down-stream machine learning algorithms can then be
applied to the aggregated network to perform node classification [8, 7]. One of the
remaining open questions is whether homogeneous network construction can be
performed in an automated, end-to-end manner. The main contributions of this
work include a novel, interpretable end-to-end knowledge graph decomposition
approach based on state-of-the-art network decomposition approaches, an im-
proved parallel decomposition algorithm and the inclusion of ground-truth edge
information between the target nodes into the network decomposition process.

This paper is structured as follows. The next section provides a brief overview
of state-of-the-art approaches to learning from different types of networks. We
continue the discussion by describing the optimization procedure used in this
work. Finally, the proposed approach is presented along with the results of its
experimental evaluation.

2 Background and related work

There are different methodologies for the analysis and construction of knowledge
graphs, which can be broadly divided into methods that focus on entities (nodes)

End-to-end Supervised Knowledge Graph Decomposition 3

and those focused to relations (links). This section only addresses methods for
node classification that significantly influenced our approach to knowledge graph
decomposition. Given that our approach leverages combinatorial optimization,
a brief outline of relevant optimization methods is provided as well.

2.1 Background: Network decomposition

In this section, we first explain the concept of network decomposition and then
introduce the HINMINE approach, a recently developed algorithm for network
decomposition.

On network decomposition. One of the main problems with node embedding
approaches is that they do not take into account different types of relations.
Further, in most cases only a single node type is supported. To address this
task, a graph first needs to be transformed into a suitable input for down-stream
learning methods, which are typically capable of handling nodes of a single type,
such as logistic regression, SVM, random forests etc. In this work we refer to the
addressed transformation task as network decomposition.

Network decomposition is formally defined as follows. Given a knowledge
graph G = (N,E,R,C), the main objective is to construct a mapping G→ GH ;
where GH corresponds to a homogeneous network GH = (NH , EH ,WH), where
NH are nodes of a single type (also referred to as the target type) and WH

represents a set of weights induced from the relations present in the knowledge
graph. Network decomposition is illustrated in Figure 1.

Fig. 1. Schematic representation of network decomposition. Intermediary nodes (yel-
low, green and purple) are used to weight the edges in the final network, consisting
exclusively of target nodes (black).

The particular class of network decompositions we are interested in is based
on node triplet counts. Here, a set of nodes {u,m, v} is used to construct a
weighted edge between u and v. The node m corresponds to an intermediary
node, to which both u and v are connected. A triplet thus corresponds to a
directed path of length two (u → m → v). In this work we build on HINMINE
methodology [6], a recently proposed approach for knowledge graph decomposi-
tion, which introduces eight different heuristics for triplet enumeration and their
transformation to weighted edges in the final homogeneous network.

4 Škrlj et al.

The HINMINE approach The HINMINE approach [6] is a recent devel-
opment that uses text mining inspired heuristics in network decomposition. A
similar approach was taken in DeepWalk [9] showing that text mining inspired
approaches can be successfully applied to network analysis. The in-house de-
veloped HINMINE methodology proposes eight text mining heuristics, which
consider different triplets as different words. The simplest heuristic corresponds
to simple term counts, which translates directly to {u, v,m} triplet enumeration.
Each edge is thus weighted based on the number of manually chosen triplets,
the two target nodes under consideration are part of.

More formally, given a heuristic function f , a weight of an edge between the
two nodes u and v is computed as

w(u, v) =
∑
m∈M

(u,m)∈E
(m,v)∈E

f(m); (1)

where the f(m) represents the weight function and m an intermediary node.
Here, M represents the set of intermediary nodes and E the set of a knowledge
graph’s edges. All weight functions used in this study are summarized in Table
1. The node set B denotes all nodes of the base type. We use the following no-
tations: f(t, d) denotes the number of times a term t appears in the document d
and D denotes the corpus (a set of documents). We assume that the documents
in the set are labeled, each document belonging to a class c from a set of all
classes C. We use the notation t ∈ d to describe that a term t appears in docu-
ment d. Where used, the term P (t) is the probability that a randomly selected
document contains the term t, and P (c) is the probability that a randomly se-
lected document belongs to class c. We use |d| to denote the length (in words)
of a document, and avgdl denotes the average document length in the corpus.
Heuristics considered in this work are summarized in Table 1.

One of the main caveats of the current HINMINE implementation is non-
automatic triplet selection—the choice of representative triplets is left to a do-
main expert. Further, the original HINMINE methodology does not address the
issue of heuristic selection, even though it was empirically proven that heuristic
selection is clearly data-dependent, i.e. different heuristics are optimal for differ-
ent knowledge graphs [6]. The original contributions of this work are aimed at
addressing these issues.

2.2 Related work on node classification

The task of node classification has been previously addressed in the field of
complex network analysis. The first group are knowledge graph aggregation ap-
proaches, where relational graphs are used as main inputs. For example, the
Trans family of algorithms [10, 11] projects subject-predicate-object triplets to
hyperplanes, where entity resolution and similar tasks can be conducted. With
the recent success of deep learning-based methods, neural network architectures
for triplet embedding construction have also gained considerable attention [12].

End-to-end Supervised Knowledge Graph Decomposition 5

Table 1. Term weighing schemes, taken from [6], tested for decomposition of knowledge
graphs and their corresponding formulas in text mining.

Scheme Formula

tf f(t, d)

if-idf f(t, d) · log

(
|D|

|{d′ ∈ D : t ∈ d′}|

)
chi^2 f(t, d) ·

∑
c∈C

(P (t ∧ c)P (¬t ∧ ¬c)− P (t ∧ ¬c)P (¬t ∧ c))2

P (t)P (¬t)P (c)P (¬c)

ig f(t, d) ·
∑

c∈C,c′∈{c,¬c}t′∈{t,¬t}

(
P (t′, c′) · log

P (t′ ∧ c′)

P (t′)P (c′)

)

gr f(t, d) ·
∑
c∈C

∑
c′∈{c,¬c}

∑
t′∈{t,¬t}

(
P (t′, c′) · log P (t′∧c′)

P (t′)P (c′)

)
−
∑

c′∈{c,¬c} P (c) · logP (c)

delta-idf f(t, d) ·
∑
c∈C

(
log

|c|
|{d′ ∈ D : d′ ∈ c ∧ t ∈ d′}| − log

|¬c|
|{d′ ∈ D : d′ /∈ c ∧ t /∈ d′}|

)
rf f(t, d) ·

∑
c∈C

log

(
2 +
|{d′ ∈ D : d′ ∈ c ∧ t ∈ d′}|
|{d′ ∈ D : d′ /∈ c ∧ t /∈ d′}|

)
bm25 f(t, d) · log

(
|D|

|{d′ ∈ D : t ∈ d′}|

)
· k + 1

f(t, d) + k ·
(

1− b + b · |d|
avgdl

)

The second family of classification methods are based on node embeddings, in-
cluding algorithms SDNE [13], LINE [14], Personalized PageRank-based meth-
ods [15, 6, 16] and similar. They produce a vectorized representation of a graph
corresponding to individual nodes, from which θ can be constructed. Embed-
dings obtained by such methods are commonly used for classification of nodes
in homogeneous networks—networks with only a single type of node, or need
to be specifically adapted for e.g., hierarchical network structure [17]. In this
work we leverage the latter, where node labels are learned from a homogeneous
network, obtained from a knowledge graph via network decomposition. Here, a
homogeneous network consists of a subset of knowledge graph’s nodes, and its
edges are derived from the knowledge graph’s edges.

2.3 Related work on parameter optimization

Optimization is one of the key components of majority of machine learning,
data mining, as well as network analysis algorithms. Given a set of constraints
C, a parameter space ψ and a scoring function g(x), where x corresponds to a
n-dimensional solution vector, the optimization objective can be formulated as
a maximization (or minimization) problem of the form:

Ropt = arg max
x∈ψ

[
g(x)

]
;

subject to C

6 Škrlj et al.

Combinatorial optimization deals with discrete parameter spaces. In a com-
mon setting, multiple sets of possible inputs are considered. In this work we
leverage the differential evolution algorithm for the proposed optimization task.

Differential evolution. Differential evolution (DE) [18, 19, 20] is an iterative
approach, where possible optimal solutions are represented as parts of a larger set
of solutions evolving over several generations. Given a nonempty set X ⊆ Rn and
an objective function f : X → R, the objective of DE is to find such x∗ ∈ X,
such that f(x∗) 6= −∞ and f(x∗) ≤ f(x) holds for all x ∈ X. Parameter
vectors are formulated as xi,G = {x1,i,G , x2,i,G , . . . , xn,i,G}; i = 1, 2, . . . , A. The
number of parameter vectors A is called the population size, while G denotes
the current generation of vectors. The set of solutions is evolved via different
evolution operators;

1. Mutation, defined as a combination of three randomly chosen vectors xa, xb, xc,
combined into a new vector xG+1, where F ∈ [0, 2] is a constant. Formally
the mutation is defined as:

vG+1 = xa,G + F (xb;G + xc;G)

2. Recombination, where successful solutions from the previous generation
are incorporated into current generation. Elements from the solution vector
v are incorporated into vector x to form the final vector u, defined as:

uj,i,G+1 =

{
vj,i,G+1, for randj,i ≤ CR ∨ j = Irand

xj,i,G for randj,i > CR ∧ j 6= Irand;

where i = 1, 2, . . . , A and j = 1, 2, . . . , n. For all i, j, randj,i is a sample of
a random variable distributed as U [0, 1], and Irand is a random element of
{1, 2, . . . , Q} which ensures that ui,G+1 6= xi,G . The CR denotes crossover-
rate, the probability of a recombination event.

3. Selection, where best individuals from current population are used for a
new population, meaning that

xi,G+1 =

{
ui,G+1, if f(ui,G+1) ≤ f(xi,G)

xi,G if f(ui,G+1) > f(xi,G)
.

Each possible solution in the population must have predetermined lower and
upper bounds of possible values. Initial solutions x0 are initialized randomly, i.e.
∀s ∈ x0; s ∼ U [0, 1]. Differential evolution can be used for optimization of both
discrete, as well as continuous objective functions [21]. One of the key parts of
each stochastic optimization procedures is solution representation. We discuss
solution representation along with the proposed approach in the next section.

End-to-end Supervised Knowledge Graph Decomposition 7

3 The proposed approach

The proposed approach consists of the following two steps. First, the learning
problem and solution are presented. This step is followed by differential evolution
of different decomposition heuristics.

We begin by describing some of the improvements to the original HINMINE
methodology, which form the basis for the proposed knowledge graph decom-
position. As stated in Equation 1, edges between target nodes are artificially
constructed based on different triplet count heuristics, summarized in Table 1.
In this work we first address two issues, that arise when real networks are con-
sidered: ground-truth edge information and parallelism needed for analysis of
larger networks. In this section we first describe the proposed improvements. We
then present the problem of finding the optimal network decomposition as an
optimization problem. The section concludes with the description of the graph
decomposition algorithm.

Current version of the HINMINE methodology enumerates individual triplets
iteratively, i.e. one at a time. This process is spatially non-demanding, as triplets
are dynamically generated. Building on this idea, we propose the following modi-
fication. First, a set of triplets is generated upfront and temporarily stored. Next,
decompositions, corresponding to the triplets are computed in parallel. Once
computed, the set of decompositions is returned. This modification is controlled
by a single parameter—the batch size. The memory consumption increases lin-
early with respect to the number of triplets used in a single batch.

Ground-truth edge information. Let u and v represent two target nodes,
between which an artificial edge is to be constructed. Currently, any prior infor-
mation on edge information between the two nodes is not taken into account.
This means that the current version of the HINMINE methodology works best
for target nodes with no ground truth edges. In this work we extend the method-
ology to include also the set of ground truth edge weights wg.

w(u, v) = α
(
wg(u, v)

)
+ β

(∑
m∈M

(u,m)∈E
(m,v)∈E

f(u, v,m)

)
; (2)

where m represents an intermediary node between u and v. The wg represents
ground-truth network weights and f a network decomposition heuristic. We fur-
ther introduce two parameters, α, β, which are used to weight the contributions
of the two different edge types. When α is set to 0, only artificial edges are used—
this is the current implementation of the HINMINE methodology. As the focus
of this work is learning from aggregated graphs, the final decomposition Df is
normalized to a right-stochastic matrix, where the weight between two nodes is
redefined as: wnorm(u, v) = 1∑K

v=1 w(u,v)
w(u, v); where K represents the number

of columns in the graph-adjacency matrix. The final graph G = (Nnorm, wnorm)
can be used for different down-stream learning tasks, such as node and edge

8 Škrlj et al.

classification, as well as clustering. This proposition is one of the first network
decomposition schemes, where prior information on edge weights can be taken
into account.

Network decomposition as an optimization problem. The main objective
of this study can be formulated as follows. Given a permissive set of decomposi-
tion heuristics P (D), a set of operators for combining different heuristics S and
a set of permissible triplet sets which are used for decomposition P (T), the ob-
jective is to calculate best possible network decomposition X ∈ Rn×n, computed
with decomposition function τ : P (D)×S×P (T)→ Rn×n. The n represents the
number of target nodes. Individual decomposition X is evaluated via a scoring
function ρ : Rn×n → R. The optimization objective function can thus be stated
as:

Xopt = arg min
(d,o,t)∈P (D)×S×P (T)

[
ρ(τ(d, o, t))

]
.

The proposed formulation does not take into account any specific decomposi-
tion scoring function ρ as the definition of this function is context-dependent. We
continue with descriptions of the parameter space, defined as P (D)×S×P (T).

The set of all possible triplet sets T. To construct decompositions of a knowl-
edge graph, we use one or more possible triplets from the set T of all possible
triplets. We consider all forward relations between a node triplet (u,m, v), e.g.,

u
Directed−−−−−→ m

LikedBy−−−−−→ v; where u for example corresponds to a person, m to a
movie and v to another person. Further, we also consider reverse relations, such

as for example u
associatedTo−−−−−−−−→ m

associatedTo−−−−−−−−→ v; which emerge as relevant for
biological problems, where for example different functional domains or similar
are common to two proteins. The proposed approach supports decomposition
based on multiple triplet sets simultaneously. Here, enumerations obtained from
individual triplets are summed into a single scalar, used as input for heuristic
evaluation. The proposed approach explores the triplet parameter space, defined
as P (T), meaning that the upper bound for the number of triplets considered
(exhaustive search) is 2|T|.

Set of decomposition heuristics D. The proposed approach can leverage all
heuristics defined in Table 1. In the approach, we explore the space of all possible
heuristics as well as their combination, meaning that the heuristic parameter
space is P (D).

Set of heuristic combination operators. Let {h1, h2, . . . , hk} be a set of matri-
ces, obtained using different decomposition heuristics. We propose four different
heuristic combination operators.

1. Element-wise sum. Let ⊕ denote elementwise matrix summation. Com-
bined aggregated matrix is thus defined as M = h1⊕· · ·⊕hk, a well defined
expression as ⊕ represents a commutative and associative operation.

2. Element-wise product. Let ⊗ denote elementwise product. Combined ag-
gregated matrix is thus defined as M = h1 ⊗ · · · ⊗ hk.

End-to-end Supervised Knowledge Graph Decomposition 9

3. Normalized element-wise sum. Let ⊕ denote elementwise summation,
and max(A) denote the largest element of the matrix A. Combined aggre-
gated matrix is thus defined as M = 1

max(h1⊕···⊕hk)
(h1 ⊕ · · · ⊕ hk). As ⊕

represents a commutative operation, this operator can be generalized to ar-
bitrary sets of heuristics without loss of generality.

4. Normalized element-wise product. Let ⊗ denote elementwise product,
and max(A) denote the largest element of the matrix A. Combined aggre-
gated matrix is thus defined as M = 1

max(h1⊗···⊗hk)
(h1 ⊗ · · · ⊗ hk). This

operator can also be generalized to arbitrary sets of heuristics.

In this work we consider whole decomposition space, i.e. P (D)×S× P (T).

Solution representation and graph decomposition algorithm Having de-
fined the parameter search space, we discuss in this section the representation
of individual solutions, evaluated with DE. Let v ∈ Rc; c = |D| + |T| + |S| + 2
be a random vector with components vi ∼ U([0, 1]) represent a one-dimensional
input vector corresponding to the set of heuristics, operators and triplets used
to obtain a decomposition. Each heuristic, operator as well as triplet correspond
to an element in Rc. A solution vector s is defined via an indicator function I,
where each element is defined as I(vi ≥ 0.5). The first |P (D)| components of the
resulting vector determine the decomposition heuristics, used for the decompo-
sition, the second |P (T)| determine the triplets and the third |S| components
determines the heuristic combination operator used. The final 2 components of
the vector correspond to parameters α and β from Equation 2.

As each field in the vector corresponds to either a triplet or a heuristic, once
the indicator function is applied, a solution can be uniquely defined. The first
non-zero value in the operator vector denotes the operator used for combining
possible solutions. Hence, we consider only a single type of operator for each
individual solution. The proposed approach can be compactly summarized as
follows.

1. First, a set of decomposition triplets and heuristics is selected.
2. Next, a set of solution combination operators, described in the previous

section is selected.
3. Iterative evolution consists of the following three steps. Mutation, followed

by recombination and selection. Selected solutions represent potential op-
tima, and are used in the next generation (iteration). Evolution is run for a
predefined number of generations.

As this work is focused on the general approach for finding the near-optimal
network decomposition, we discuss an example using a task-specific evaluation
function in the next section.

4 Experimental setting

We test the proposed approach on the following datasets.

10 Škrlj et al.

The IMDB dataset. The main classification task related to this dataset cor-
responds to classification of individual movie’s genres, based on actors, directors
and movies [6]. Here, 300 nodes are labeled, whereas the whole network consists
of 6, 387 nodes and 14, 714 edges. An example triplet yielding a valid decompo-

sition for this dataset is: Actor
actsIn−−−−→Movie

directedBy−−−−−−−→ Director. This network
does not contain any ground-truth edge information, and thus the α parameter
is not relevant for this problem. The DE was parameterized with 15 generations
of size 10. The CR rate was set to 0.4, mutation rate to 0.05 and the selection
strategy best1bin, the default option in [22]. The same parameterization is used
for the epigenetics dataset.

The epigenetics dataset. An example from the biological domain used is the
recently introduced epigenetics knowledge graph [23], where proteins, genes and
other biological entities are connected with different relations. Further, differ-
ent protein-protein interactions are annotated with ground-truth edge weights
corresponding to reliability of interactions. We annotate each protein in the
network with the corresponding GO terms, associated with their functions,
which is achieved as follows. Functional annotations are obtained from the Intact
database [24]. We sort annotations by frequency and select 100 of the most com-
mon terms, which correspond to 100 classes being predicted. The α parameter
was selected directly from the interval between 0 and 1. The classification goal
for this dataset is thus protein function prediction. The network consists of 2, 204
nodes and 2, 772 edges, 456 nodes are target nodes for which the classification

is Protein
contains−−−−−→ Domain

contains−−−−−→ Protein.

Performance evaluation. We evaluate the performance as follows. If possible,
we compute scores for all possible combinations of triplets, heuristics and oper-
ators. Once computed, a global parameter landscape is obtained, which can be
used to directly assess the algorithm’s performance. Further, we use randomized
grid search as the baseline approach.4 In this work we evaluate an aggregated
network’s quality by computing a classification performance metric in a process
of 10-fold cross validation. The node label classification approach is the same
as used in the original HINMINE methodology. The aggregated network is used
to construct a set of personalized page-rank vectors (PPR), which represent the
feature matrix F . Label matrix T corresponds to individual labels, assigned to
distinct nodes and consists of N · |C| cells, where N is the number of all nodes
and C the set of all classes.5 The tuple (F, T) is used as input for one-vs-many
logistic regression classifier. In this work we use the macro F1 measure for eval-
uation of individual solutions. The macro F1 score averages individual, pairwise
F1 scores, defined as : precision = tp

tp+fp ;, recall = tp
tp+fn , F1 = 2 · precision·recall

precision+recall ;

4 The machine used for evaluation was an of-the-shelf Lenovo y510p laptop with an
i7 Intel processor (8 cores) and 4GB of RAM.

5 The feature matrix is not memory efficient, as it uses O(N2) space, yet optimization
of this part of the procedure is out of the scope of this study.

End-to-end Supervised Knowledge Graph Decomposition 11

Fig. 2. Score distribution over all parameter space for the IMDB network decom-
position problem. The red line denotes the optimal solution found by the proposed
approach.

over all classes, where fp denotes false positives, tp true positives and fn false
negatives. The C represents the set of target classes. The total score thus equals

macroF1 =
1

|C|
∑
i∈C

F1(i).

We leave extensive computational evaluation of different DE parameteriza-
tions for further work.

5 Results and discussion

For the IMDB network we compute all possible decompositions and visualize the
solution obtained by the proposed as the red line in Figure 2.

We observe, that the proposed approach found the global maximum—here
corresponding to the rightmost combination of decompositions. The final decom-
position was obtained by combining the following heuristics: ig and gr. The fol-

lowing triplets were used:Movie
features−−−−−→ Person

actsIn−−−−→Movie,Movie
directedBy−−−−−−−→

Person
directed−−−−−→ Movie, Movie

features−−−−−→ Person
directed−−−−−→ Movie. The combina-

tion operator used was element-wise product.

12 Škrlj et al.

As computing all decompositions for the epigenetics problem is not compu-
tationally feasible, we compare the result obtained with the average decompo-
sition performance obtained by sampling the decomposition distribution. The
mean performance for this approach estimates to 0.0284, whereas the mean per-
formance using 10000 different decomposition samples estimates to 0.0253. The
samples were selected by randomly permuting the solution vectors with values
between 0 and 1. Further, in this case the obtained decomposition is not opti-
mal, as the best sampled decomposition scored with 0.0293. The decomposition
returned by the proposed approach consisted of the following heuristics: ig, gr
and bm25. The triplets:

Protein
contains−−−−−→ Domain

contains−−−−−→ Protein

Protein
interactsWith−−−−−−−−→ Protein

subsumes−−−−−−→ Protein

Protein
belongsTo−−−−−−→ Family

belongsTo−−−−−−→ Protein

Protein
isRelatedTo−−−−−−−→ Phenotype

isRelatedTo−−−−−−−→ Protein

Protein
interactsWith−−−−−−−−→ Protein

interactsWith−−−−−−−−→ Protein

were found as the combination used to obtain the best decomposition. The com-
bination operator used for decomposition aggregation was elementwise product.
The results from both experiments averaged over five runs with different stochas-
tic seeds are summarized in Table 2.

The two experiments indicate that the proposed approach can provide the
currently not known solution to proper knowledge graph decomposition and ag-
gregation for node label classification. The approach in both cases outperforms
the mean baseline, where for the IMDB dataset it performs the same as the
best possible decomposition, where for the epigenetics dataset it performs worse
compared to the best decompositions out of 10000 random samples. To under-
stand the limitations of the proposed approach, different stochastic optimization
procedures could be tested, yet such extensive experimental evaluation is left for
further work.

The decomposition triplets, found as crucial for the epigenetics dataset are
biologically relevant, supported by the following observations. Protein domains
have been previously associated and recognized as key features for function pre-
diction [25]. Latent interaction partners are often used for constructing protein-

Table 2. Empirical result summary. The F1 corresponds to macro-F1 score. The bold
numbers denote the global optimum, identified for the IMDB dataset. Min and Max
F1 scores denote minimum and maximum network decomposition performance.

Dataset Min F1 Max F1 Mean F1 Proposed approach DE Exhaustive search

IMDB 0.0315 0.0372 0.0346 0.0372 50min ≈ 22h
Epigenetics 0.0211 0.0296 0.0243 0.0284 6h > 1day

End-to-end Supervised Knowledge Graph Decomposition 13

protein interaction prediction tools, i.e. two proteins often interact if they both
interact with a third partner [26]. Phenotypes are highly correlated with protein
function [27]. Protein families are also relevant for function prediction, as they
can correspond directly to protein binding sites and similar functional domains
[28, 29, 30]

The proposed method performs significantly faster compared to exhaustive
search. For the IMDB dataset, the global optimum was found more than twenty
times faster. A similar pattern was observed for the Epigenetics dataset, yet
the number of possible combinations was too exhaustive and was evaluated via
sampling.

6 Conclusions

In this work we present a novel end-to-end stochastic-optimization-based ap-
proach for network decomposition and subsequent aggregation. This work builds
on current state-of-the-art HINMINE methodology, which does not provide a
fully automated procedure for obtaining dataset-specific decompositions. We
demonstrate the use of the proposed method on two real life knowledge graphs,
where in one there is also ground-truth edge classification information available.
The proposed method performs better than average decomposition, which indi-
cates that the proposed stochastic optimization in the form of differential evo-
lution could provide a feasible approach for automated knowledge graph-based
learning.

As the proposed approach automatically identifies the relations that are rel-
evant for node classification, we can interpret the final result in terms of novel,
meaningful relations, previously not considered as important for the given knowl-
edge graph for the given classification task. The biological interpretations indi-
cate one of the possible uses of final decomposition triplets. Apart from obtaining
a better predictive model, the final result is interpretable and can be linked to
existing knowledge. Further, the final set of triplets uncovers the novel candi-
date relations. As the set of relations differs from task-to-task, the triplets could
potentially offer qualitative explanation for key relations relevant to black-box
models, such as deep neural networks.

Further work includes extensive experimental evaluation on more types of
knowledge graphs, as well as the investigation of different optimization routines,
for example Bayesian optimization, which has proven invaluable for automated
machine learning. Further, we will investigate how the spatially intensive homo-
geneous networks could be reduced during the learning process.

Bibliography

[1] Burt, R., Minor, M.: Applied Network Analysis: A Methodological Intro-
duction. Sage Publications (1983)

[2] Sun, Y., Han, J.: Mining Heterogeneous Information Networks: Principles
and Methodologies. Morgan & Claypool Publishers (2012)

14 Škrlj et al.

[3] Consortium: Gene Ontology: Tool for the unification of biology. the gene
ontology consortium. Nature genetics 25(1) (May 2000) 25–29

[4] Ehrlinger, L., Wöß, W.: Towards a definition of knowledge graphs. In:
SEMANTiCS (Posters, Demos, SuCCESS). (2016)

[5] Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational
machine learning for knowledge graphs. Proceedings of the IEEE 104(1)
(2016) 11–33

[6] Kralj, J., Robnik-Šikonja, M., Lavrač, N.: HINMINE: Heterogeneous in-
formation network mining with information retrieval heuristics. Journal of
Intelligent Information Systems (2017) 1–33

[7] Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.:
Collective classification in network data. AI Magazine 29(3) (2008) 93

[8] de Sousa, C.A.R., Rezende, S.O., Batista, G.E.: Influence of graph construc-
tion on semi-supervised learning. In: Proceedings of the Joint European
Conference on Machine Learning and Knowledge Discovery in Databases,
Springer (2013) 160–175

[9] Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social
representations. In: Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM (2014) 701–
710

[10] Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: A
survey of approaches and applications. IEEE Transactions on Knowledge
and Data Engineering 29(12) (2017) 2724–2743

[11] Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by
translating on hyperplanes. In: Proceedings of AAAI. Volume 14. (2014)
1112–1119

[12] Cai, H., Zheng, V.W., Chang, K.: A comprehensive survey of graph embed-
ding: problems, techniques and applications. IEEE Transactions on Knowl-
edge and Data Engineering (2018)

[13] Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM (2016) 1225–1234

[14] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale
information network embedding. In: Proceedings of the 24th International
Conference on World Wide Web, International World Wide Web Confer-
ences Steering Committee (2015) 1067–1077

[15] Grčar, M., Trdin, N., Lavrač, N.: A methodology for mining document-
enriched heterogeneous information networks. The Computer Journal 56(3)
(2013) 321–335

[16] Kralj, J., Valmarska, A., Robnik-Šikonja, M., Lavrač, N.: Mining text en-
riched heterogeneous citation networks. In: Proceedings of the 19th Pacific-
Asia Conference on Knowledge Discovery and Data Mining. (May 2015)
672–683

[17] Žitnik, M., Leskovec, J.: Predicting multicellular function through multi-
layer tissue networks. Bioinformatics 33(14) (2017) i190–i198

End-to-end Supervised Knowledge Graph Decomposition 15

[18] Fleetwood, K.: An introduction to differential evolution. In: Proceedings
of Mathematics and Statistics of Complex Systems (MASCOS) One Day
Symposium, 26th November, Brisbane, Australia. (2004) 785–791

[19] Price, K., Storn, R.M., Lampinen, J.A.: Differential evolution: A practical
approach to global optimization. Springer Science & Business Media (2006)

[20] Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential
evolution–an updated survey. Swarm and Evolutionary Computation 27
(2016) 1–30

[21] Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-
of-the-art. IEEE Transactions on Evolutionary Computation 15(1) (2011)
4–31

[22] Jones, E., Oliphant, T., Peterson, P.: SciPy: Open Source Scientific Tools
for Python. (2014)

[23] Škrlj, B., Kralj, J., Vavpetič, A., Lavrač, N.: Community-based semantic
subgroup discovery. In: Proceedings of New Frontiers in Mining Complex
Patterns Workshop, Cham, Springer International Publishing (2018) 182–
196

[24] Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-
Carter, F., Campbell, N.H., Chavali, G., Chen, C., del Toro, N., Duesbury,
M., Dumousseau, M., Galeota, E., Hinz, U., Iannuccelli, M., Jagannathan,
S., Jimenez, R., Khadake, J., Lagreid, A., Licata, L., Lovering, R.C., Mel-
dal, B., Melidoni, A.N., Milagros, M., Peluso, D., Perfetto, L., Porras, P.,
Raghunath, A., Ricard-Blum, S., Roechert, B., Stutz, A., Tognolli, M., van
Roey, K., Cesareni, G., Hermjakob, H.: The MIntAct project–IntAct as a
common curation platform for 11 molecular interaction databases. Nucleic
Acids Research 42(Database issue) (January 2014) D358–63

[25] Marchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F.,
Geer, L.Y., Geer, R.C., He, J., Gwadz, M., Hurwitz, D.I., et al.: CDD:
NCBI’s conserved domain database. Nucleic Acids Research 43(D1) (2014)
D222–D226

[26] Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D.,
Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., et al.:
String v10: Protein–protein interaction networks, integrated over the tree
of life. Nucleic Acids Research 43(D1) (2014) D447–D452

[27] Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., Sternberg, M.J.: The
Phyre2 web portal for protein modeling, prediction and analysis. Nature
Protocols 10(6) (2015) 845

[28] Finn, R.D., Attwood, T.K., Babbitt, P.C., Bateman, A., Bork, P., Bridge,
A.J., Chang, H.Y., Dosztányi, Z., El-Gebali, S., Fraser, M., et al.: Interpro in
2017beyond protein family and domain annotations. Nucleic acids research
45(D1) (2016) D190–D199

[29] Lee, J., Konc, J., Janežič, D., Brooks, B.R.: Global organization of a binding
site network gives insight into evolution and structure-function relationships
of proteins. Scientific Reports 7(1) (2017) 11652

[30] Škrlj, B., Kunej, T., Konc, J.: Insights from ion binding site network analysis
into evolution and functions of proteins. Molecular Informatics (2018)

DDeMON

DDeMON: Ontology-scale function prediction by Deep
Learning from Dynamic Multiplex Networks

Jan Kralj jan.kralj@ijs.si
Jožef Stefan Institute, Department of Knowledge Technologies,
Jamova 39, 1000 Ljubljana, Slovenia

Blaž Škrlj blaz.skrlj@ijs.si

Jožef Stefan Institute, Department of Knowledge Technologies,

Jamova 39, 1000 Ljubljana, Slovenia

Editor:

Abstract

Motivation: Biological systems can be due to abundance of data studied on multiple dif-
ferent levels of information, including gene, protein, RNA and other interaction networks.
We explore how fusion of systems’ level information with temporal dynamics of gene ex-
pression can be used in combination with non-linear approximation power of deep neural
networks to predict novel genes, related to stress response and other molecular functions
in Solanum sp.
Results: We propose DDeMON (Dynamic Deep learning from temporal Multiplex Ontology-
annotated Networks), an approach for scalable, systems-level inference of function anno-
tation using time-dependent multiscale biological information. We demonstrate the use
of the proposed method on recently introduced experimental expression data, discovering
multiple novel biomarkers, valuable for understanding pathogen response, as well as pre-
liminary disease detection.

1. Introduction

In this report, we present an approach to predicting gene function from experimental data.
The approach, based on our previous work on the HinMine algorithm Kralj et al. (2017)
fuses data from a diverse collection of sources into a single network and then performs
data analysis on the resulting network. This work represents one of the first attempts to
modeling a plant’s stress response with respect to both temporal, as well as static infor-
mation incorporating multiple levels of biological information, including protein-protein,
protein-gene and gene-gene interaction networks.

2. Data collection

The data set we used was the result of a biological experiment, performed at NIB, examining
gene expression after a viral infection with the PVY (Potato Virus Y) virus Baebler et al.
(2014). Potato plants were grown in a controlled environment for 4 weeks. After this period,
the leaves of the plants were dusted in carborundum powder and rubbed with cheesecloth
dipped in a sap prepared from the leaves of PVY-infected tobacco plants. Control plants
were treated with mock inoculations where water was used instead of the sap.

1

Kralj, Škrlj

On day 1, 3 and 6 after infection, RNA samples were collected from plants and analyzed
using microarrays. The result was a collection of 42,034 continuous gene expression values
for each treatment (mock or virus) and each day post infection (1, 3 and 6). For microarray
probes mapping to the same potato plant gene, we obtained the gene expression by averag-
ing expression values over all the probes - the 42,034 values were thus further transformed
into 33,937 values, each showing expression of one particular gene.

3. The proposed DDeMON approach

The proposed approach is an extension of the existing methodology HinMine for data
mining on large heterogeneous information networks.

HinMine is a two step methodology to mine heterogeneous information networks (de-
fined by Sun and Han (2012)), in which a certain type of nodes (called the target type) is
labeled. In the first step of the methodology, the heterogeneous network is decomposed into
a set of homogeneous networks, containing only the target nodes of the original network.
In each homogeneous network two nodes are connected if they share a particular direct or
indirect link in the original heterogeneous network. Take as an example a network con-
taining two types of nodes, Papers and Authors, and two edge types, Cites (linking papers
to papers) and Written by (linking papers to authors). From it, we can construct two
homogeneous networks of papers: the first, in which two papers are connected if one paper
cites another, and the second, in which they are connected if they share a common author.
The choice of links used in the network decomposition step requires expert who takes the
meaning of links into account and chooses only the decompositions relevant for a given task.
In the second step of the methodology, the homogeneous networks are propositionalized –
for each node in the network, a feature vector representing the node is calculated. This step
is performed using the Personalized PageRank method Page et al. (1999) and is described
in more detail in Section 3.4

In the following sections, we discuss the proposed DDeMON approach in detail. We
begin by describing the data used, followed by overview of the computational methodology
used for feature construction and learning.

3.1 Data used

We use data from several main sources, described below.

1. Gene expression data. The primary data used in our approach is the gene expression data.
As described in Section 2, we processed the results of the original biological experiment to
obtain a time series of 12 expression values for each gene. In total, we analyzed 33,937 genes.

2. Large knowledge graph The first part of additional data used in the approach is the Large
Knowledge Graph. This is a graph composed of publicly available data on gene-gene interac-
tions and contains edges of various types. The construction and use of this network is further
described in Section 3.2.2

3. PubMed database Finally, we connected the genes in our database to PubMed articles, related
to them. To obtain a representative set of articles for most genes, we looked not at papers,
referring the genes themselves, but rather papers, referring to homolog genes in the species
Arabidopsis Thaliana.

The genes were annotated with the GoMapMan taxonomy of gene functions. GoMap-
Man Rotter et al. (2013) is an open web-accessible resource for gene functional annotations
in the plant sciences. It was developed to facilitate improvement, consolidation and visual-
ization of gene annotations across several plant species. Each gene in the data we analyzed

2

DDeMON

Node type Number of nodes

Potato Gene TODO
Arabidopsis Thaliana Gene TODO
PubMed Article TODO

Table 1: Nodes of the heterogeneous network, constructed by the DDeMON approach

Edge type (node types) Number of edges Directed

Homolog-to (Potato gene - Arabidopsis Thaliana gene) TODO No
Cited-by (Arabidopsis Thaliana gene - PubMed Article) TODO Yes
Transcription Factor-of (Potato gene - Potato gene) TODO Yes
Binding-to (Potato gene - Potato gene) TODO Yes
Experimental - healthy (Potato gene - Potato gene) TODO Yes
Experimental - infected (Potato gene - Potato gene) TODO Yes

Table 2: Nodes of the heterogeneous network, constructed by the DDeMON approach

was annotated by one or more GoMapMan bins, however, out of the 33,937 genes we an-
alyzed, 10,231 of them belonged to the GoMapMan bin 35, meaning the function of those
genes is at this point unknown. The approach, outlined in this work, presents an attempt
at discovering the gene function of these genes, thus assigning the genes from bin 35 into
one of the other bins.

3.2 Network construction

In order to apply the Hinmine propositionalization methodology, we used the three data
sources, described in Section 3.1, to construct a single heterogeneous network. The types
of nodes and edges, present in the network, are summarized in Tables 1 and 2. We describe
the construction of the various aspects of the network in the following sections.

3.2.1 Constructing Homolog and Cited-by edges

In order to construct the (undirected) edges of type Homolog connecting potato genes with
Arabidopsis Thaliana genes, we connected each potato gene to all Arabidopsis Thaliana
genes in the same homolog group. To obtain homolog groups for the genes, we used data
available on the GoMapMan website 1. To then connect the Arabidopsis Thaliana genes to
PubMed articles by directed edges, we used the online tool TAIR Berardini et al. (2015)2

and converted the exports from TAIR into the network. Note that, even if these edges
are not constructed explicitly constructed, the construction of an edge of type Cited-by
between gene g and paper p also implicitly constructs an edge of type Cites between paper
p and gene g.

3.2.2 Constructing Transcription Factor and Binding edges

The edges of the type Transcription Factor (either inhibition, activation or unknown) and
Binding were extracted from a previously constructed comprehensive knowledge network.

1. http://protein.gomapman.org/export/current/biomine/ath homolog and
http://protein.gomapman.org/export/current/biomine/stu homolog

2. https://www.arabidopsis.org/

3

Kralj, Škrlj

To construct that network, we combined the graph of binary PIS-v2 interactions with
three layers of publicly available information: protein-protein interactions (PPIs), tran-
scriptional regulation (TR), and regulation through microRNA (miRNA). This resulted
in an Arabidopsis thaliana comprehensive knowledge network with 20,012 nodes (19,812
genes, 186 miRNA families, three metabolites, and 11 viral proteins) and 70,091 connec-
tions. Each data layer covers unique gene or miRNA subsets in the entire network, with
only six nodes present in all four layers, which indicates that our layer selection was well
suited for inclusion.

For the purpose of our approach, we extracted all the edges from the comprehensive
knowledge network into our heterogeneous network.

3.2.3 Consructing experimental edges

The final set of edges we constructed were edges, induced directly from the raw gene
expression data, described in Section 3.1. For the purpose of DDeMON, we view the raw
data as a collection of time series, each time series charting the strength of the expression
of one particular gene. To transform the data into a network, we used the time series
data to induce weights on edges between each pair of genes. The goal was to construct a
network where a two genes are connected by a strong weight if the experimental data shows
they share a similar expression profile (i.e. if the time series, describing their expression
over time, are similar). In order to determine the similarity between two time series, we
used Dynamic Time Warping (DTW) dtw (2007), an algorithm designed for measuring
similarity between two temporal sequences. The algorithm takes as input two temporal
sequences and returns the distance from one to the other.

In DDeMON, for each pair of genes g1 and g2, we use the inverse value of the distance
between their respective expression data series as the weight of the edge between the genes.
The inverse value ensures that genes with more similar expression profiles will be connected
by a stronger weight. As the raw data contains both expression profiles for genes in infected
plants and in healthy plants, we repeat the same procedure on both parts of the raw
data, thus constructing both Experimental healthy and Experimental infected edges in the
network.

3.3 Homogeneous networks construction

After the heterogeneous network is constructed, DDeMON uses the HinMine algorithm
to analyze it. The first step of the HinMine algorithm is construction of homogeneous
networks from the input heterogeneous network. In each homogeneous network two nodes
are connected if they share a particular direct or indirect link in the original heterogeneous
network. In particular, we used the HinMine decomposition methodology to construct a
network of genes in which two potato genes are connected if they are homologs to two
Arabidopsis Thaliana genes, mentioned in the same PubMed publication. This means that
potato genes g1, g2 are connected if there exists some path from g1 - Homolog-to - at1 -
Cited-by - p - Cites - at2 -Homolog-to - g2.

In addition to the common-PubMed-Article network of genes, described above, we
used 6 other homogeneous networks on the same set of nodes (genes), described above:
inhibition TF, activation TF, TODO TF, binding, experimental healthy and experimen-
tal infected. All 7 homogeneous networks

4

DDeMON

3.4 Feature vector construction

To construct feature vectors from the 7 homogeneous networks, described above, we use the
network propositionalization step of the HinMine algorithm. The step calculates feature
vectors for each node of the homogeneous network using the personalized PageRank (P-PR)
algorithm (Page et al., 1999). The personalized PageRank of node v (P-PRv) in a network
is defined as the stationary distribution of the position of a random walker who starts the
walk in node v and then at each node either selects one of the outgoing connections or
jumps back to node v. The probability (denoted p) of continuing the walk is a parameter
of the personalized PageRank algorithm and is usually set to 0.85. Once calculated, the
resulting PageRank vectors are normalized according to the Euclidean norm. The resulting
vector contains information about the proximity of node v to each of the remaining nodes of
the network. We consider the P-PR vectors of a node as a propositionalized feature vector
of the node. Because two nodes with similar P-PR vectors will be in proximity of similar
nodes a classifier should consider them as similar instances. We use the vectors to classify
the nodes from which they were calculated. For a single homogeneous network, the proposi-
tionalization results in one feature vector per node. For classifying a heterogeneous network
decomposed into k homogeneous networks Grčar et al. (2013) propose to concatenate and
assign weights to the k vectors, obtained from the k homogeneous networks.

3.5 Dimensionality reduction and learning

The HinMine algorithm works by calculating Personalized PageRank-based feature vectors
for each of the nodes in a network. As the dimension of these feature vectors is by definition
equal to the number of nodes in the network, this means that the feature vector construction
step, described above, produces and concatenates seven high-dimensional vectors for each
gene in the network. We took into account the seven different aspects related to a single
node, yielding 7 · |V | · 33,937 features per node. Our initial attempts to learn from such
vectors directly did not yield any promising results, as we believe the raw feature vectors
contained too much noise. Our solution to this problem is dimensionality reduction, a
technique commonly employed when the dimensionality of the data set is too high. We
reduced the obtained feature vectors for each aspect as follows:

1. Dimensionality of each aspect was reducted to dimension d using PCA

2. All aspects were finally merged into a single data set, this time of dimensionality |V |/cdotd/cdot8.

This allowed us to reduce the size of the network to a more manageable size and
ensure that the produced feature vectors can practically be used by a number of supervised
machine learning algorithms in the final step, described in Section 3.6.

3.6 Gene function prediction

The steps of the proposed DDeMON approach, described so far, yield a set of feature vectors
for each gene in the original data set. The feature vectors are derived from both expression,
as well as network data, hence the obtained data set is suitable for all propositional learners.
In the final step of the approach, the feature vectors can be used by any of a number
of supervised machine learning algorithms. In our experiments, we tested five different
classification algorithms, listed below. Note that, due to prohibitively expensive training
times, the possibilities of fine-tuning parameters of the tested methods was severely limited.

• rSVM - a regular version of Support Vector Machines with equal weights assigned to all
training examples. We used the scikit-learn implementation of the support vector machines.
The optimal value of the constant C in the algorithm was determined by a grid search over

5

Kralj, Škrlj

the range {1, 0.1, 0.01, 0.001, 0.0001}. Our experiments show that the optimal value for C is
0.001.

• bSVM - a balanced version of Support Vector Machines, a variation on the first classifier
where the weight of each training example is proportional to the size of the class it belongs
to. Like with the rSVM classifier, the optimal value for the constant C was 0.001.

• GBM - Gradient boosting machines are a tree ensemble learning method, which operates
under the assumption, that combining multiple weak classifiers yields a strong one. In each
iteration, gradient boosting algorithms exploit the gradient of the error function to weight the
instances for the next tree learner. Hence, each iteration, the algorithm emphasizes different
parts of the data set. In this work, we used the of-the-shelf GBM algorithm offered in SciKit-
Learn library Pedregosa et al. (2011).

• DNN and dDNN - Deep neural networks - two distinct architectures (discussed next) - We
implemented two feedforward deep neural network architectures, which differ by the number
of hidden layers. The first architecture (DNN) consists of two hidden layers, and the second,
deeper architecture consisted of four hidden layers (dDNN). The optimal number of neurons
was determined by using grid search over the value range {20, 64, 128, 256, 386, 512, 1024}. The
activation function which yielded the best performance was ELU, applied after all intermediary
layers. We also experimented with ReLU, sigmoid activations. Finally, as the two discussed
architectures learn a single target per run, we further generalized the architectures so it can
learn an arbitrary number of targets in the same training phase. We achieved so by changing
the last layer of the architecture. Here, we replace the single neuron (dDNN and DNN) with
sigmoid activation with a set of neurons, where the number of neurons equals the number of
targets. We refer to this architecture as (mlDNN - multilabel deep neural network). The loss
function used was binary cross entropy. The trainable weights were optimized using Adam
(Kingma and Ba (2014)), where the learning rate was set to 0,001. The final number of
neurons in hidden layers for the dDNN were

64, 128, 386, 512

and for DNN

20, 500

, respectively. The neural networks were implemented using the Tensorflow library (Abadi
et al. (2016)).

The above described methods were used in an identical setting: given a GoMapMan
bin and a set of genes, some belonging to the bin and others not, we wanted to predict
whether a new instance also belongs to the same GoMapMan bin. All methods we used
were used to not simply classify new instances, but to provide a score corresponding to the
likelihood of the new instance belonging to a given GoMapMan bin. Note that, except for
the final mlDNN method, all other methods require separate training on each of the bins
we wish to classify genes to.

3.7 Evaluation metrics

The purpose of the DDeMON approach is to correctly classify genes with unknown function
into one of the existing GoMapMan bins. To evaluate the reliability of the predictions,
produced by our approach, we used 10-fold cross validation and evaluated the performance
of all methods, described in Section 3.6. We evaluated the performance of the method on
simple binary problems, i.e. answering only the question “Does gene g belong to bin b?”,

6

DDeMON

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves vs. oversampling

deeperNN, dimension: 1000, oversamling: 0x [AUC: 0.91]
deeperNN, dimension: 2500, oversamling: 0x [AUC: 0.91]
deeperNN, dimension: 5000, oversamling: 0x [AUC: 0.89]
deeperNN, dimension: 1000, oversamling: 5x [AUC: 0.91]
deeperNN, dimension: 2500, oversamling: 5x [AUC: 0.90]
deeperNN, dimension: 5000, oversamling: 5x [AUC: 0.88]
deeperNN, dimension: 1000, oversamling: 10x [AUC: 0.90]
deeperNN, dimension: 2500, oversamling: 10x [AUC: 0.89]
deeperNN, dimension: 1000, oversamling: 15x [AUC: 0.90]
deeperNN, dimension: 2500, oversamling: 15x [AUC: 0.88]
deeperNN, dimension: 1000, oversamling: 20x [AUC: 0.90]
deeperNN, dimension: 2500, oversamling: 20x [AUC: 0.88]

Figure 1: The performance of the dDNN classifier on various feature vector dimensions and
oversampling values.

allowing us to compare all methods without the need for fitting all classifiers to all possible
bins (this would prove prohibitively expensive).

We evaluated the results using the receiver operating characteristic curves (ROC), with
corresponding AUC scalar values assessing individual binary classifications.

4. Results

Results show that all of the classifiers we tested perform well, however there are important
differences in the performance of each classifier. In this section, we analyze the obtained
results. We first analyze the effect of dimensionality reduction and oversampling on classifier
performance in Section 4.1 and continue with a comparison of the classifiers in Section 4.2.
We conclude with Section 4.3 describing the final results of the DDeMON methodology.

4.1 Effect of dimensionality reduction and oversampling

In this section, we analyze the results of experiments which show the effect of dimensionality
reduction on the performance of various classifiers. In order to compare the performance of
the classifiers, we tested their ability to predict whether a gene belongs to the GoMapMan
bin 20.1 (biotic stress). We selected this bin because it is most closely linked to the
phenomenon (virus infection) we analyzed to obtain the data, and computing predictions
for all bins is not possible as it would take several months.

Figure 1 shows the performance (measured via a ROC curve) of the dDNN architecture
with varying sizes of feature vector dimension and different oversampling factors. While

7

Kralj, Škrlj

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves vs. oversampling

GBM, dimension: 1000, oversamling: 0x [AUC: 0.87]
GBM, dimension: 2500, oversamling: 0x [AUC: 0.88]
GBM, dimension: 1000, oversamling: 5x [AUC: 0.88]
GBM, dimension: 2500, oversamling: 5x [AUC: 0.88]
GBM, dimension: 1000, oversamling: 10x [AUC: 0.88]
GBM, dimension: 2500, oversamling: 10x [AUC: 0.88]
GBM, dimension: 1000, oversamling: 15x [AUC: 0.88]
GBM, dimension: 2500, oversamling: 15x [AUC: 0.88]
GBM, dimension: 1000, oversamling: 20x [AUC: 0.88]
GBM, dimension: 2500, oversamling: 20x [AUC: 0.88]

Figure 2: The performance of the GBM classifier on various feature vector dimensions and
oversampling values.

the differences in performance are small as all classifiers run reasonably well, the best
performance was acchieved using no oversampling and feature vector dimension of 1000.
Figure 2, showing the performance of the GBM classifier, shows an even smaller difference
in classifier performance as we vary the dimension of the feature vectors and the amount of
oversampling we perform. While running the classifier on a data set of dimension 5000 was
computationally infeasible, we still believe the classifier using a vector dimension of 1000
and no oversampling is the best choice for the next step. The classifier appears at first
to be outperformed by other classifiers, however on closer inspection, we believe that the
marginally smaller AUC can be explained by the fact that the classifier performed worst on
exactly the two points between which the largest part of the ROC curve was interpolated,
thus appearing to show a worse performance by pure chance.

The results of the experiments on neural networks and GBM classifiers shows that using
a vector dimension of 1000 id a good choice for the DDeMON algorithm as the algorithm
performs well on a data set of this dimension. We therefore performed the experiments on
the SVM classifiers only on dimension 1000. Figure 3 shows the performance of both the
rSVM and bSVM classifiers. We only show the performance of the bSVM classifier on a
data set with no oversampling because our experiments confirm that oversampling has no
effect on the classification of the bSVM classifier. This is expected as the balanced weights,
used by bSVM, are designed precisely to counteract any imbalance of the set on which the
classifier is trained. From Figure 3, we conclude that the best performing classifier is the
bSVM classifier, again run on a dimension of 1000 and no oversampling.

8

DDeMON

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves vs. oversampling

Regular SVM, dimension: 1000, oversamling: 1x [AUC: 0.76]
Regular SVM, dimension: 1000, oversamling: 5x [AUC: 0.81]
Regular SVM, dimension: 1000, oversamling: 10x [AUC: 0.85]
Regular SVM, dimension: 1000, oversamling: 20x [AUC: 0.85]
Balanced SVM, dimension: 1000, oversamling: 1x [AUC: 0.87]

Figure 3: The performance of the rSVM classifier on various oversampling values and the
bSVM classifier.

4.2 Analysis of classifier performance

In this section, we analyze the performance of different classifiers on several of the most
important GoMapMan bins. Unlike the previous section, we added the multilabel mlDNN
classifier to result of this section as the advantage of this classifier is only apparent when
classifying into more than one bin, as we discuss below. We omitted the GBM classifier
from this set of experiments due to the long training times it requires.

Limiting our range of classifiers to the dDNN, SVM and, additionally, the multilabel
mlDNN classifiers, all run on a data set of dimension 1000 and without oversampling),
we were able to test the performance of the classifiers over several GoMapMan bins. We
performed 10-fold cross validation for all second-level bins (i.e., for the bin 20.1, but not
for its sub-bins such as 20.1.1) which contained at least 100 of the original 33,937 genes.
The results for 20 most populated bins are shown in Table 3.

While the results of Table 3 show that the dDNN classifier consistently outperforms
the other two classifiers, this should not be the only conclusion we draw from this set of
experiments. As shown in Figure 4, it is clear that the GBM classifier is not dominated by
the dNN classifier. Furthermore, the fact that the mlNN classifier performs consistently
worse than the dDNN classifier is an expected result, as the same neural network architec-
ture will perform better if solving a simpler task (binary versus multilabel). The advantage
of the mlNN classifier lies in its speed, as the classifier takes approximatelly the same time
to perform predictions on all of the second-level GoMapMan bins as the bSVM and dDNN
classifiers take to perform predictions for a single bin – meaning it performs approximatelly
100 times faster.

9

Kralj, Škrlj

Table 3: Results of the best performing classifiers on the top 20 most populated GoMapMan
bins.

GMM bin number of positives NNMultilabel 1000 0 SVM 1000 0 deeperNN 1000 0

27.3 2952 0.8952 0.8461 0.9089
29.5 2241 0.8705 0.9024 0.8836
20.1 1173 0.8613 0.8660 0.8959
30.2 1061 0.8899 0.9032 0.9030
29.4 1046 0.8741 0.7868 0.8892
29.2 973 0.8268 0.8395 0.8540
28.1 600 0.8501 0.8893 0.8703
33.99 590 0.8660 0.8779 0.8898
26.1 589 0.8794 0.8834 0.8958
31.1 507 0.9000 0.8903 0.9233
20.2 419 0.8969 0.9053 0.9022
26.2 405 0.8604 0.9090 0.8841
27.1 378 0.9098 0.8989 0.9351
29.3 344 0.8592 0.8817 0.8893
30.3 326 0.9337 0.9436 0.9406
17.2 316 0.8926 0.8788 0.9049
28.99 313 0.8881 0.8941 0.9009
30.5 298 0.8595 0.8624 0.8855
1.1 281 0.9271 0.9607 0.9449
27.4 247 0.8724 0.8654 0.8712

4.3 Final results

Concluding this report, Tables 4 and 5 shows the predictions of the DDeMON approach on
two GoMapMan bins, 1.1 and 17.5. The tables show a ranked list of genes from GoMapMan
bin 35 (unknown function), where a higher ranking means that the gene is more likely to
belong to bin 1.1 or 17.5. Observing the tables, we see that the three classifiers we used
show a high level of agreement – if a gene is ranked highly by one classifier, its ranks given
by the other two classifiers are also high. This, along with high AUC scores demonstrated
in previous sections, gives confidence to the predictions made by the DDeMON approach.

References

Dynamic Time Warping, pages 69–84. Springer Berlin Heidelberg, 2007.

Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 16), pages 265–283, 2016.

Š Baebler, K Witek, M Petek, K Stare, M Tušek-Žnidarič, M Pompe-Novak, J Renaut, K Szajko,
D Strzelczyk-Żyta, W Marczewski, et al. Salicylic acid is an indispensable component of the

10

DDeMON

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves vs. oversampling

Balanced SVM, dimension: 1000, oversamling: 1x [AUC: 0.87]
GBM, dimension: 1000, oversamling: 0x [AUC: 0.87]
deeperNN, dimension: 1000, oversamling: 0x [AUC: 0.91]

Figure 4: The performance of the three selected classifiers on various GoMapMan bin 20.1.

Ny-1 resistance-gene-mediated response against Potato virus Y infection in potato. Journal of
Experimental Botany, 65(4):1095–1109, 2014.

Tanya Z. Berardini, Leonore Reiser, Donghui Li, Yarik Mezheritsky, Robert Muller, Emily Strait,
and Eva Huala. The arabidopsis information resource: Making and mining the “gold standard”
annotated reference plant genome. genesis, 53(8):474–485, 2015.

Miha Grčar, Nejc Trdin, and Nada Lavrač. A methodology for mining document-enriched hetero-
geneous information networks. The Computer Journal, 56(3):321–335, 2013.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jan Kralj, Marko Robnik-Šikonja, and Nada Lavrač. HINMINE: Heterogeneous information network
mining with information retrieval heuristics. Journal of Intelligent Information Systems, pages
1–33, 2017.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, November 1999.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

11

Kralj, Škrlj

Table 4: The top 20 genes (sorted by the maximum ranked given to the genes by three
classifiers) for the GoMapMan bin 1.1

ID SVM rank GBM rank DNN rank

Sotub01g015190.1.1 27 47 34
Sotub12g022150.1.1 20 52 1
Sotub11g017690.1.1 33 56 21
Sotub12g009780.1.1 32 56 19
Sotub11g020220.1.1 1 58 4
Sotub10g012760.1.1 15 59 26
Sotub12g024790.1.1 13 59 16
Sotub11g006830.1.1 14 59 14
Sotub09g014120.1.1 17 59 18
Sotub10g010920.1.1 10 63 5
Sotub10g010940.1.1 11 63 7
Sotub10g010960.1.1 12 63 8
Sotub03g026560.1.1 35 66 50
Sotub05g012520.1.1 42 67 44
Sotub07g015350.1.1 48 75 45
Sotub08g012010.1.1 40 75 37
Sotub03g033550.1.1 41 75 39
Sotub02g010750.1.1 38 75 35
Sotub12g016200.1.1 25 79 36

Ana Rotter, Björn Usadel, Igor Mozetič, Kristina Gruden, Matej Korbar, Špela Baebler, and Živa
Ramšak. GoMapMan: integration, consolidation and visualization of plant gene annotations
within the MapMan ontology. Nucleic Acids Research, 42(D1):D1167–D1175, 11 2013.

Yizhou Sun and Jiawei Han. Mining Heterogeneous Information Networks: Principles and Method-
ologies. Morgan & Claypool Publishers, 2012.

12

DDeMON

Table 5: The top 20 genes (sorted by the maximum ranked given to the genes by three
classifiers) for the GoMapMan bin 1.1

ID SVM rank GBM rank DNN rank

Sotub09g026260.1.1 1 54 1
Sotub07g027010.1.1 2 54 2
Sotub05g022390.1.1 30 62 3
Sotub09g016860.1.1 16 64 27
PGSC0003DMG400011623 25 64 25
PGSC0003DMG400035415 14 64 10
Sotub08g019470.1.1 10 64 14
PGSC0003DMG400045539 11 64 9
PGSC0003DMG400023564 8 64 5
PGSC0003DMG400022155 26 70 28
PGSC0003DMG400046184 9 75 7
PGSC0003DMG400043412 13 76 11
PGSC0003DMG400043564 23 76 23
PGSC0003DMG400044263 19 76 8
PGSC0003DMG400039590 21 76 20
Sotub06g009760.1.1 22 80 22
PGSC0003DMG400013586 29 80 4
PGSC0003DMG400021088 28 82 32
PGSC0003DMG400004046 31 82 12

13

